Long Short-term Memory–Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation

Author:

Athanasiou MariaORCID,Fragkozidis GeorgiosORCID,Zarkogianni KonstantiaORCID,Nikita Konstantina SORCID

Abstract

Background The potential to harness the plurality of available data in real time along with advanced data analytics for the accurate prediction of influenza-like illness (ILI) outbreaks has gained significant scientific interest. Different methodologies based on the use of machine learning techniques and traditional and alternative data sources, such as ILI surveillance reports, weather reports, search engine queries, and social media, have been explored with the ultimate goal of being used in the development of electronic surveillance systems that could complement existing monitoring resources. Objective The scope of this study was to investigate for the first time the combined use of ILI surveillance data, weather data, and Twitter data along with deep learning techniques toward the development of prediction models able to nowcast and forecast weekly ILI cases. By assessing the predictive power of both traditional and alternative data sources on the use case of ILI, this study aimed to provide a novel approach for corroborating evidence and enhancing accuracy and reliability in the surveillance of infectious diseases. Methods The model’s input space consisted of information related to weekly ILI surveillance, web-based social (eg, Twitter) behavior, and weather conditions. For the design and development of the model, relevant data corresponding to the period of 2010 to 2019 and focusing on the Greek population and weather were collected. Long short-term memory (LSTM) neural networks were leveraged to efficiently handle the sequential and nonlinear nature of the multitude of collected data. The 3 data categories were first used separately for training 3 LSTM-based primary models. Subsequently, different transfer learning (TL) approaches were explored with the aim of creating various feature spaces combining the features extracted from the corresponding primary models’ LSTM layers for the latter to feed a dense layer. Results The primary model that learned from weather data yielded better forecast accuracy (root mean square error [RMSE]=0.144; Pearson correlation coefficient [PCC]=0.801) than the model trained with ILI historical data (RMSE=0.159; PCC=0.794). The best performance was achieved by the TL-based model leveraging the combination of the 3 data categories (RMSE=0.128; PCC=0.822). Conclusions The superiority of the TL-based model, which considers Twitter data, weather data, and ILI surveillance data, reflects the potential of alternative public sources to enhance accurate and reliable prediction of ILI spread. Despite its focus on the use case of Greece, the proposed approach can be generalized to other locations, populations, and social media platforms to support the surveillance of infectious diseases with the ultimate goal of reinforcing preparedness for future epidemics.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference59 articles.

1. The top 10 causes of deathWorld Health Organization20201292022-08-01https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

2. Pricing infectious disease

3. Influenza: are we ready?World Health Organization2022-08-01https://www.who.int/news-room/spotlight/influenza-are-we-ready

4. Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly

5. Cost of Sickness Absenteeism during Seasonal Influenza Outbreaks of Medium Intensity among Health Care Workers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3