The effects of weather and mobility on respiratory viruses dynamics before and after the COVID-19 pandemic

Author:

Varela-Lasheras Irma,Perfeito Lília,Mesquita Sara,Gonçalves-Sá Joana

Abstract

AbstractThe flu season is caused by a combination of different pathogens, including influenza viruses (IVS), that cause the flu, and non-influenza respiratory viruses (NIRVs), that cause common colds or influenza-like illness. These viruses have similar circulation patterns, and weather has been considered a main driver of their dynamics, with peaks in the winter and almost no circulation during the summer in temperate regions. However, after the emergence of SARS-CoV2, in 2019, the dynamics of these respiratory viruses were strongly perturbed worldwide: some infections almost disappeared, others were delayed or occurred “off-season”. This disruption raised questions regarding the dominant role of weather while also providing an unique opportunity to investigate the relevance of different driving factors on the epidemiological dynamics of IVs and NIRVs, including viral interactions, non-pharmacological individual measures (such as masking), or mobility. Here, we use epidemiological surveillance data on several respiratory viruses from Canada and the USA from 2016 to 2023, and tested the effects of weather and mobility in their dynamics before and after the COVID-19 pandemic. Using statistical modelling, we found evidence that whereas in the pre-COVID-19 pandemic period, weather had a strong effect and mobility a limited effect on dynamics; in the post-COVID-19 pandemic period the effect of weather was strongly reduced and mobility played a more relevant role. These results, together with previous studies, indicate that at least some of the behavioral changes resulting from the non-pharmacological interventions implemented during COVID-19 pandemic had a strong effect on the dynamics of respiratory viruses. Furthermore, our results support the idea that these seasonal dynamics are driven by a complex system of interactions between the different factors involved, which probably led to an equilibrium that was disturbed, and perhaps permanently altered, by the COVID-19 pandemic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3