Matching Biomedical Ontologies: Construction of Matching Clues and Systematic Evaluation of Different Combinations of Matchers

Author:

Wang PengORCID,Hu YunyanORCID,Bai ShaochenORCID,Zou ShiyiORCID

Abstract

Background Ontology matching seeks to find semantic correspondences between ontologies. With an increasing number of biomedical ontologies being developed independently, matching these ontologies to solve the interoperability problem has become a critical task in biomedical applications. However, some challenges remain. First, extracting and constructing matching clues from biomedical ontologies is a nontrivial problem. Second, it is unknown whether there are dominant matchers while matching biomedical ontologies. Finally, ontology matching also suffers from computational complexity owing to the large-scale sizes of biomedical ontologies. Objective To investigate the effectiveness of matching clues and composite match approaches, this paper presents a spectrum of matchers with different combination strategies and empirically studies their influence on matching biomedical ontologies. Besides, extended reduction anchors are introduced to effectively decrease the time complexity while matching large biomedical ontologies. Methods In this paper, atomic and composite matching clues are first constructed in 4 dimensions: terminology, structure, external knowledge, and representation learning. Then, a spectrum of matchers based on a flexible combination of atomic clues are designed and utilized to comprehensively study the effectiveness. Besides, we carry out a systematic comparative evaluation of different combinations of matchers. Finally, extended reduction anchor is proposed to significantly alleviate the time complexity for matching large-scale biomedical ontologies. Results Experimental results show that considering distinguishable matching clues in biomedical ontologies leads to a substantial improvement in all available information. Besides, incorporating different types of matchers with reliability results in a marked improvement, which is comparative to the state-of-the-art methods. The dominant matchers achieve F1 measures of 0.9271, 0.8218, and 0.5 on Anatomy, FMA-NCI (Foundation Model of Anatomy-National Cancer Institute), and FMA-SNOMED data sets, respectively. Extended reduction anchor is able to solve the scalability problem of matching large biomedical ontologies. It achieves a significant reduction in time complexity with little loss of F1 measure at the same time, with a 0.21% decrease on the Anatomy data set and 0.84% decrease on the FMA-NCI data set, but with a 2.65% increase on the FMA-SNOMED data set. Conclusions This paper systematically analyzes and compares the effectiveness of different matching clues, matchers, and combination strategies. Multiple empirical studies demonstrate that distinguishing clues have significant implications for matching biomedical ontologies. In contrast to the matchers with single clue, those combining multiple clues exhibit more stable and accurate performance. In addition, our results provide evidence that the approach based on extended reduction anchors performs well for large ontology matching tasks, demonstrating an effective solution for the problem.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3