Matching ontologies with kernel principle component analysis and evolutionary algorithm

Author:

Xue Xingsi1,Ye Miao2,Nian Qifeng3

Affiliation:

1. Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology , Fuzhou , Fujian , China

2. Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology , Guilin , Guangxi , China

3. School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University , Fuqing , Fujian , China

Abstract

Abstract Ontology serves as a structured knowledge representation that models domain-specific concepts, properties, and relationships. Ontology matching (OM) aims to identify similar entities across distinct ontologies, which is essential for enabling communication between them. At the heart of OM lies the similarity feature (SF), which measures the likeness of entities from different perspectives. Due to the intricate nature of entity diversity, no single SF can be universally effective in heterogeneous scenarios, which underscores the urgency to construct an SF with high discriminative power. However, the intricate interactions among SFs make the selection and combination of SFs an open challenge. To address this issue, this work proposes a novel kernel principle component analysis and evolutionary algorithm (EA) to automatically construct SF for OM. First, a two-stage framework is designed to optimize SF selection and combination, ensuring holistic SF construction. Second, a cosine similarity-driven kPCA is presented to capture intricate SF relationships, offering precise SF selection. Finally, to bolster the practical application of EA in the SF combination, a novel evaluation metric is developed to automatically guide the algorithm toward more reliable ontology alignments. In the experiment, our method is compared with the state-of-the-art OM methods in the Benchmark and Conference datasets provided by the ontology alignment evaluation initiative. The experimental results show its effectiveness in producing high-quality ontology alignments across various matching tasks, significantly outperforming the state-of-the-art matching methods.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3