Explainable Machine Learning Techniques To Predict Amiodarone-Induced Thyroid Dysfunction Risk: Multicenter, Retrospective Study With External Validation

Author:

Lu Ya-TingORCID,Chao Horng-JiunORCID,Chiang Yi-ChunORCID,Chen Hsiang-YinORCID

Abstract

Background Machine learning offers new solutions for predicting life-threatening, unpredictable amiodarone-induced thyroid dysfunction. Traditional regression approaches for adverse-effect prediction without time-series consideration of features have yielded suboptimal predictions. Machine learning algorithms with multiple data sets at different time points may generate better performance in predicting adverse effects. Objective We aimed to develop and validate machine learning models for forecasting individualized amiodarone-induced thyroid dysfunction risk and to optimize a machine learning–based risk stratification scheme with a resampling method and readjustment of the clinically derived decision thresholds. Methods This study developed machine learning models using multicenter, delinked electronic health records. It included patients receiving amiodarone from January 2013 to December 2017. The training set was composed of data from Taipei Medical University Hospital and Wan Fang Hospital, while data from Taipei Medical University Shuang Ho Hospital were used as the external test set. The study collected stationary features at baseline and dynamic features at the first, second, third, sixth, ninth, 12th, 15th, 18th, and 21st months after amiodarone initiation. We used 16 machine learning models, including extreme gradient boosting, adaptive boosting, k-nearest neighbor, and logistic regression models, along with an original resampling method and 3 other resampling methods, including oversampling with the borderline-synthesized minority oversampling technique, undersampling–edited nearest neighbor, and over- and undersampling hybrid methods. The model performance was compared based on accuracy; Precision, recall, F1-score, geometric mean, area under the curve of the receiver operating characteristic curve (AUROC), and the area under the precision-recall curve (AUPRC). Feature importance was determined by the best model. The decision threshold was readjusted to identify the best cutoff value and a Kaplan-Meier survival analysis was performed. Results The training set contained 4075 patients from Taipei Medical University Hospital and Wan Fang Hospital, of whom 583 (14.3%) developed amiodarone-induced thyroid dysfunction, while the external test set included 2422 patients from Taipei Medical University Shuang Ho Hospital, of whom 275 (11.4%) developed amiodarone-induced thyroid dysfunction. The extreme gradient boosting oversampling machine learning model demonstrated the best predictive outcomes among all 16 models. The accuracy; Precision, recall, F1-score, G-mean, AUPRC, and AUROC were 0.923, 0.632, 0.756, 0.688, 0.845, 0.751, and 0.934, respectively. After readjusting the cutoff, the best value was 0.627, and the F1-score reached 0.699. The best threshold was able to classify 286 of 2422 patients (11.8%) as high-risk subjects, among which 275 were true-positive patients in the testing set. A shorter treatment duration; higher levels of thyroid-stimulating hormone and high-density lipoprotein cholesterol; and lower levels of free thyroxin, alkaline phosphatase, and low-density lipoprotein were the most important features. Conclusions Machine learning models combined with resampling methods can predict amiodarone-induced thyroid dysfunction and serve as a support tool for individualized risk prediction and clinical decision support.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3