Development of a System for Predicting Hospitalization Time for Patients With Traumatic Brain Injury Based on Machine Learning Algorithms: User-Centered Design Case Study

Author:

Zhou HuanORCID,Fang ChengORCID,Pan YifengORCID

Abstract

Abstract Background Currently, the treatment and care of patients with traumatic brain injury (TBI) are intractable health problems worldwide and greatly increase the medical burden in society. However, machine learning–based algorithms and the use of a large amount of data accumulated in the clinic in the past can predict the hospitalization time of patients with brain injury in advance, so as to design a reasonable arrangement of resources and effectively reduce the medical burden of society. Especially in China, where medical resources are so tight, this method has important application value. Objective We aimed to develop a system based on a machine learning model for predicting the length of hospitalization of patients with TBI, which is available to patients, nurses, and physicians. Methods We collected information on 1128 patients who received treatment at the Neurosurgery Center of the Second Affiliated Hospital of Anhui Medical University from May 2017 to May 2022, and we trained and tested the machine learning model using 5 cross-validations to avoid overfitting; 28 types of independent variables were used as input variables in the machine learning model, and the length of hospitalization was used as the output variables. Once the models were trained, we obtained the error and goodness of fit (R2) of each machine learning model from the 5 rounds of cross-validation and compared them to select the best predictive model to be encapsulated in the developed system. In addition, we externally tested the models using clinical data related to patients treated at the First Affiliated Hospital of Anhui Medical University from June 2021 to February 2022. Results Six machine learning models were built, including support vector regression machine, convolutional neural network, back propagation neural network, random forest, logistic regression, and multilayer perceptron. Among them, the support vector regression has the smallest error of 10.22% on the test set, the highest goodness of fit of 90.4%, and all performances are the best among the 6 models. In addition, we used external datasets to verify the experimental results of these 6 models in order to avoid experimental chance, and the support vector regression machine eventually performed the best in the external datasets. Therefore, we chose to encapsulate the support vector regression machine into our system for predicting the length of stay of patients with traumatic brain trauma. Finally, we made the developed system available to patients, nurses, and physicians, and the satisfaction questionnaire showed that patients, nurses, and physicians agreed that the system was effective in providing clinical decisions to help patients, nurses, and physicians. Conclusions This study shows that the support vector regression machine model developed using machine learning methods can accurately predict the length of hospitalization of patients with TBI, and the developed prediction system has strong clinical use.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3