The Generation of a Lung Cancer Health Factor Distribution Using Patient Graphs Constructed From Electronic Medical Records: Retrospective Study

Author:

Chen AnjunORCID,Huang RanORCID,Wu ErmanORCID,Han RuobingORCID,Wen JianORCID,Li QinghuaORCID,Zhang ZhiyongORCID,Shen BairongORCID

Abstract

Background Electronic medical records (EMRs) of patients with lung cancer (LC) capture a variety of health factors. Understanding the distribution of these factors will help identify key factors for risk prediction in preventive screening for LC. Objective We aimed to generate an integrated biomedical graph from EMR data and Unified Medical Language System (UMLS) ontology for LC, and to generate an LC health factor distribution from a hospital EMR of approximately 1 million patients. Methods The data were collected from 2 sets of 1397 patients with and those without LC. A patient-centered health factor graph was plotted with 108,000 standardized data, and a graph database was generated to integrate the graphs of patient health factors and the UMLS ontology. With the patient graph, we calculated the connection delta ratio (CDR) for each of the health factors to measure the relative strength of the factor’s relationship to LC. Results The patient graph had 93,000 relations between the 2794 patient nodes and 650 factor nodes. An LC graph with 187 related biomedical concepts and 188 horizontal biomedical relations was plotted and linked to the patient graph. Searching the integrated biomedical graph with any number or category of health factors resulted in graphical representations of relationships between patients and factors, while searches using any patient presented the patient’s health factors from the EMR and the LC knowledge graph (KG) from the UMLS in the same graph. Sorting the health factors by CDR in descending order generated a distribution of health factors for LC. The top 70 CDR-ranked factors of disease, symptom, medical history, observation, and laboratory test categories were verified to be concordant with those found in the literature. Conclusions By collecting standardized data of thousands of patients with and those without LC from the EMR, it was possible to generate a hospital-wide patient-centered health factor graph for graph search and presentation. The patient graph could be integrated with the UMLS KG for LC and thus enable hospitals to bring continuously updated international standard biomedical KGs from the UMLS for clinical use in hospitals. CDR analysis of the graph of patients with LC generated a CDR-sorted distribution of health factors, in which the top CDR-ranked health factors were concordant with the literature. The resulting distribution of LC health factors can be used to help personalize risk evaluation and preventive screening recommendations.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference31 articles.

1. Lung cancer screening with low-dose CT: a world-wide view

2. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening

3. Selection Criteria for Lung-Cancer Screening

4. Lung Cancer ScreeningNational Cancer Institute. Cancer Trends Progress Report2022-11-14https://progressreport.cancer.gov/detection/lung_cancer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3