Abstract
Background
A significant proportion of young at-risk patients and nonsmokers are excluded by the current guidelines for lung cancer (LC) screening, resulting in low-screening adoption. The vision of the US National Academy of Medicine to transform health systems into learning health systems (LHS) holds promise for bringing necessary structural changes to health care, thereby addressing the exclusivity and adoption issues of LC screening.
Objective
This study aims to realize the LHS vision by designing an equitable, machine learning (ML)–enabled LHS unit for LC screening. It focuses on developing an inclusive and practical LC risk prediction model, suitable for initializing the ML-enabled LHS (ML-LHS) unit. This model aims to empower primary physicians in a clinical research network, linking central hospitals and rural clinics, to routinely deliver risk-based screening for enhancing LC early detection in broader populations.
Methods
We created a standardized data set of health factors from 1397 patients with LC and 1448 control patients, all aged 30 years and older, including both smokers and nonsmokers, from a hospital’s electronic medical record system. Initially, a data-centric ML approach was used to create inclusive ML models for risk prediction from all available health factors. Subsequently, a quantitative distribution of LC health factors was used in feature engineering to refine the models into a more practical model with fewer variables.
Results
The initial inclusive 250-variable XGBoost model for LC risk prediction achieved performance metrics of 0.86 recall, 0.90 precision, and 0.89 accuracy. Post feature refinement, a practical 29-variable XGBoost model was developed, displaying performance metrics of 0.80 recall, 0.82 precision, and 0.82 accuracy. This model met the criteria for initializing the ML-LHS unit for risk-based, inclusive LC screening within clinical research networks.
Conclusions
This study designed an innovative ML-LHS unit for a clinical research network, aiming to sustainably provide inclusive LC screening to all at-risk populations. It developed an inclusive and practical XGBoost model from hospital electronic medical record data, capable of initializing such an ML-LHS unit for community and rural clinics. The anticipated deployment of this ML-LHS unit is expected to significantly improve LC-screening rates and early detection among broader populations, including those typically overlooked by existing screening guidelines.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献