Machine Learning and Medication Adherence: Scoping Review

Author:

Bohlmann AaronORCID,Mostafa JavedORCID,Kumar ManishORCID

Abstract

Background This is the first scoping review to focus broadly on the topics of machine learning and medication adherence. Objective This review aims to categorize, summarize, and analyze literature focused on using machine learning for actions related to medication adherence. Methods PubMed, Scopus, ACM Digital Library, IEEE, and Web of Science were searched to find works that meet the inclusion criteria. After full-text review, 43 works were included in the final analysis. Information of interest was systematically charted before inclusion in the final draft. Studies were placed into natural categories for additional analysis dependent upon the combination of actions related to medication adherence. The protocol for this scoping review was created using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. Results Publications focused on predicting medication adherence have uncovered 20 strong predictors that were significant in two or more studies. A total of 13 studies that predicted medication adherence used either self-reported questionnaires or pharmacy claims data to determine medication adherence status. In addition, 13 studies that predicted medication adherence did so using either logistic regression, artificial neural networks, random forest, or support vector machines. Of the 15 studies that predicted medication adherence, 6 reported predictor accuracy, the lowest of which was 77.6%. Of 13 monitoring systems, 12 determined medication administration using medication container sensors or sensors in consumer electronics, like smartwatches or smartphones. A total of 11 monitoring systems used logistic regression, artificial neural networks, support vector machines, or random forest algorithms to determine medication administration. The 4 systems that monitored inhaler administration reported a classification accuracy of 93.75% or higher. The 2 systems that monitored medication status in patients with Parkinson disease reported a classification accuracy of 78% or higher. A total of 3 studies monitored medication administration using only smartwatch sensors and reported a classification accuracy of 78.6% or higher. Two systems that provided context-aware medication reminders helped patients to achieve an adherence level of 92% or higher. Two conversational artificial intelligence reminder systems significantly improved adherence rates when compared against traditional reminder systems. Conclusions Creation of systems that accurately predict medication adherence across multiple data sets may be possible due to predictors remaining strong across multiple studies. Higher quality measures of adherence should be adopted when possible so that prediction algorithms are based on accurate information. Currently, medication adherence can be predicted with a good level of accuracy, potentially allowing for the development of interventions aimed at preventing nonadherence. Monitoring systems that track inhaler use currently classify inhaler-related actions with an excellent level of accuracy, allowing for tracking of adherence and potentially proper inhaler technique. Systems that monitor medication states in patients with Parkinson disease can currently achieve a good level of classification accuracy and have the potential to inform medication therapy changes in the future. Medication administration monitoring systems that only use motion sensors in smartwatches can currently achieve a good level of classification accuracy but only when differentiating between a small number of possible activities. Context-aware reminder systems can help patients achieve high levels of medication adherence but are also intrusive, which may not be acceptable to users. Conversational artificial intelligence reminder systems can significantly improve adherence.

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3