Investigating the use of data-driven artificial intelligence in computerised decision support systems for health and social care: A systematic review

Author:

Cresswell Kathrin1ORCID,Callaghan Margaret1,Khan Sheraz1,Sheikh Zakariya1,Mozaffar Hajar1,Sheikh Aziz1

Affiliation:

1. The University of Edinburgh, UK

Abstract

There is growing interest in the potential of artificial intelligence to support decision-making in health and social care settings. There is, however, currently limited evidence of the effectiveness of these systems. The aim of this study was to investigate the effectiveness of artificial intelligence-based computerised decision support systems in health and social care settings. We conducted a systematic literature review to identify relevant randomised controlled trials conducted between 2013 and 2018. We searched the following databases: MEDLINE, EMBASE, CINAHL, PsycINFO, Web of Science, Cochrane Library, ASSIA, Emerald, Health Business Fulltext Elite, ProQuest Public Health, Social Care Online, and grey literature sources. Search terms were conceptualised into three groups: artificial intelligence-related terms, computerised decision support -related terms, and terms relating to health and social care. Terms within groups were combined using the Boolean operator OR, and groups were combined using the Boolean operator AND. Two reviewers independently screened studies against the eligibility criteria and two independent reviewers extracted data on eligible studies onto a customised sheet. We assessed the quality of studies through the Critical Appraisal Skills Programme checklist for randomised controlled trials. We then conducted a narrative synthesis. We identified 68 hits of which five studies satisfied the inclusion criteria. These studies varied substantially in relation to quality, settings, outcomes, and technologies. None of the studies was conducted in social care settings, and three randomised controlled trials showed no difference in patient outcomes. Of these, one investigated the use of Bayesian triage algorithms on forced expiratory volume in 1 second (FEV1) and health-related quality of life in lung transplant patients. Another investigated the effect of image pattern recognition on neonatal development outcomes in pregnant women, and another investigated the effect of the Kalman filter technique for warfarin dosing suggestions on time in therapeutic range. The remaining two randomised controlled trials, investigating computer vision and neural networks on medication adherence and the impact of learning algorithms on assessment time of patients with gestational diabetes, showed statistically significant and clinically important differences to the control groups receiving standard care. However, these studies tended to be of low quality lacking detailed descriptions of methods and only one study used a double-blind design. Although the evidence of effectiveness of data-driven artificial intelligence to support decision-making in health and social care settings is limited, this work provides important insights on how a meaningful evidence base in this emerging field needs to be developed going forward. It is unlikely that any single overall message surrounding effectiveness will emerge - rather effectiveness of interventions is likely to be context-specific and calls for inclusion of a range of study designs to investigate mechanisms of action.

Funder

Digital Health and Care Institute

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3