Clinical Insight Into Latent Variables of Psychiatric Questionnaires for Mood Symptom Self-Assessment

Author:

Tsanas AthanasiosORCID,Saunders KateORCID,Bilderbeck AmyORCID,Palmius NiclasORCID,Goodwin GuyORCID,De Vos MaartenORCID

Abstract

Background We recently described a new questionnaire to monitor mood called mood zoom (MZ). MZ comprises 6 items assessing mood symptoms on a 7-point Likert scale; we had previously used standard principal component analysis (PCA) to tentatively understand its properties, but the presence of multiple nonzero loadings obstructed the interpretation of its latent variables. Objective The aim of this study was to rigorously investigate the internal properties and latent variables of MZ using an algorithmic approach which may lead to more interpretable results than PCA. Additionally, we explored three other widely used psychiatric questionnaires to investigate latent variable structure similarities with MZ: (1) Altman self-rating mania scale (ASRM), assessing mania; (2) quick inventory of depressive symptomatology (QIDS) self-report, assessing depression; and (3) generalized anxiety disorder (7-item) (GAD-7), assessing anxiety. Methods We elicited responses from 131 participants: 48 bipolar disorder (BD), 32 borderline personality disorder (BPD), and 51 healthy controls (HC), collected longitudinally (median [interquartile range, IQR]: 363 [276] days). Participants were requested to complete ASRM, QIDS, and GAD-7 weekly (all 3 questionnaires were completed on the Web) and MZ daily (using a custom-based smartphone app). We applied sparse PCA (SPCA) to determine the latent variables for the four questionnaires, where a small subset of the original items contributes toward each latent variable. Results We found that MZ had great consistency across the three cohorts studied. Three main principal components were derived using SPCA, which can be tentatively interpreted as (1) anxiety and sadness, (2) positive affect, and (3) irritability. The MZ principal component comprising anxiety and sadness explains most of the variance in BD and BPD, whereas the positive affect of MZ explains most of the variance in HC. The latent variables in ASRM were identical for the patient groups but different for HC; nevertheless, the latent variables shared common items across both the patient group and HC. On the contrary, QIDS had overall very different principal components across groups; sleep was a key element in HC and BD but was absent in BPD. In GAD-7, nervousness was the principal component explaining most of the variance in BD and HC. Conclusions This study has important implications for understanding self-reported mood. MZ has a consistent, intuitively interpretable latent variable structure and hence may be a good instrument for generic mood assessment. Irritability appears to be the key distinguishing latent variable between BD and BPD and might be useful for differential diagnosis. Anxiety and sadness are closely interlinked, a finding that might inform treatment effects to jointly address these covarying symptoms. Anxiety and nervousness appear to be amongst the cardinal latent variable symptoms in BD and merit close attention in clinical practice.

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3