Mendelian randomization analysis using multiple biomarkers of an underlying common exposure

Author:

Jin Jin12,Qi Guanghao34,Yu Zhi5,Chatterjee Nilanjan16ORCID

Affiliation:

1. Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University , 615 N Wolfe St , Baltimore, MD 21205, United States

2. Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania , 423 Guardian Drive , Philadelphia, PA 19104-6021, United States

3. Department of Biomedical Engineering, Johns Hopkins University , 720 Rutland Avenue , Baltimore, MD 21205, United States

4. Department of Biostatistics, University of Washington , 3980 15th Avenue NE , Seattle, WA 98195-1617, United States

5. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard , 415 Main St Cambridge , MA 02142, United States

6. Department of Oncology, School of Medicine, Johns Hopkins University , 733 N Broadway , Baltimore, MD 21205, United States

Abstract

Summary Mendelian randomization (MR) analysis is increasingly popular for testing the causal effect of exposures on disease outcomes using data from genome-wide association studies. In some settings, the underlying exposure, such as systematic inflammation, may not be directly observable, but measurements can be available on multiple biomarkers or other types of traits that are co-regulated by the exposure. We propose a method for MR analysis on latent exposures (MRLE), which tests the significance for, and the direction of, the effect of a latent exposure by leveraging information from multiple related traits. The method is developed by constructing a set of estimating functions based on the second-order moments of GWAS summary association statistics for the observable traits, under a structural equation model where genetic variants are assumed to have indirect effects through the latent exposure and potentially direct effects on the traits. Simulation studies show that MRLE has well-controlled type I error rates and enhanced power compared to single-trait MR tests under various types of pleiotropy. Applications of MRLE using genetic association statistics across five inflammatory biomarkers (CRP, IL-6, IL-8, TNF-α, and MCP-1) provide evidence for potential causal effects of inflammation on increasing the risk of coronary artery disease, colorectal cancer, and rheumatoid arthritis, while standard MR analysis for individual biomarkers fails to detect consistent evidence for such effects.

Funder

National Human Genome Research Institute

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3