Extracting Drug Names and Associated Attributes From Discharge Summaries: Text Mining Study

Author:

Alfattni GhadaORCID,Belousov MaksimORCID,Peek NielsORCID,Nenadic GoranORCID

Abstract

Background Drug prescriptions are often recorded in free-text clinical narratives; making this information available in a structured form is important to support many health-related tasks. Although several natural language processing (NLP) methods have been proposed to extract such information, many challenges remain. Objective This study evaluates the feasibility of using NLP and deep learning approaches for extracting and linking drug names and associated attributes identified in clinical free-text notes and presents an extensive error analysis of different methods. This study initiated with the participation in the 2018 National NLP Clinical Challenges (n2c2) shared task on adverse drug events and medication extraction. Methods The proposed system (DrugEx) consists of a named entity recognizer (NER) to identify drugs and associated attributes and a relation extraction (RE) method to identify the relations between them. For NER, we explored deep learning-based approaches (ie, bidirectional long-short term memory with conditional random fields [BiLSTM-CRFs]) with various embeddings (ie, word embedding, character embedding [CE], and semantic-feature embedding) to investigate how different embeddings influence the performance. A rule-based method was implemented for RE and compared with a context-aware long-short term memory (LSTM) model. The methods were trained and evaluated using the 2018 n2c2 shared task data. Results The experiments showed that the best model (BiLSTM-CRFs with pretrained word embeddings [PWE] and CE) achieved lenient micro F-scores of 0.921 for NER, 0.927 for RE, and 0.855 for the end-to-end system. NER, which relies on the pretrained word and semantic embeddings, performed better on most individual entity types, but NER with PWE and CE had the highest classification efficiency among the proposed approaches. Extracting relations using the rule-based method achieved higher accuracy than the context-aware LSTM for most relations. Interestingly, the LSTM model performed notably better in the reason-drug relations, the most challenging relation type. Conclusions The proposed end-to-end system achieved encouraging results and demonstrated the feasibility of using deep learning methods to extract medication information from free-text data.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference59 articles.

1. Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis

2. KarystianisGExtraction and representation of key characteristics from epidemiological literatureThe University of Manchester20142021-03-31https://tinyurl.com/bv927sfthttps://tinyurl.com/645sksnd

3. Extracting structured information from free-text medication prescriptions using dependencies

4. MedXN: an open source medication extraction and normalization tool for clinical text

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3