Exploring Biomedical Named Entity Recognition via SciSpaCy and BioBERT Models

Author:

Jolly Aman,Pandey Vikas,Singh Indrasen,Sharma Neha

Abstract

Introduction Biological Named Entity Recognition (BioNER) is a crucial preprocessing step for Bio-AI analysis. Methods Our paper explores the field of Biomedical Named Entity Recognition (BioNER) by closely analysing two advanced models, SciSpaCy and BioBERT. We have made two distinct contributions: Initially, we thoroughly train these models using a wide range of biological datasets, allowing for a methodical assessment of their performance in many areas. We offer detailed evaluations using important parameters like F1 scores and processing speed to provide precise insights into the effectiveness of BioNER activities. Results Furthermore, our study provides significant recommendations for choosing tools that are customised to meet unique BioNER needs, thereby enhancing the efficiency of Named Entity Recognition in the field of biomedical research. Our work focuses on tackling the complex challenges involved in BioNER and enhancing our understanding of model performance. Conclusion The goal of this research is to drive progress in this important field and enable more effective use of advanced data analysis tools for extracting valuable insights from biomedical literature.

Publisher

Bentham Science Publishers Ltd.

Reference89 articles.

1. Luo L, Lai P-T, Wei C-H, Arighi C N, Lu Z. BioRED: A rich biomedical relation extraction dataset. Brief Bioinform 2022; 2022 (5) : 1-12.

2. Xi Q, Ren Y, Yao S, Wu G, Miao G, Zhang Z. Chinese named entity recognition. Applicat Challeng 2021; 12647 : 51-81.

3. Ahmed A, Abbasi A, Eickhoff C. Benchmarking modern named entity recognition techniques for free-text health record deidentification. AMIA Jt Summits Transl Sci Proc 2021; 2021 : 102-11.

4. Hema R, Devi A. Chemical named entity recognition using deep learning techniques. Deep Natural Language Processing and AI Applications for Industry pp.59-73, 2021.

5. Dawar K, Samuel AJ, Alvarado R. Comparing topic modeling and named entity recognition techniques for the semantic indexing of a landscape architecture textbook. 2019 Syst Inf Eng Des Symp 1-6. 2019;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3