Traditional Machine Learning, Deep Learning, and BERT (Large Language Model) Approaches for Predicting Hospitalizations From Nurse Triage Notes: Comparative Evaluation of Resource Management

Author:

Patel DhavalkumarORCID,Timsina PremORCID,Gorenstein LarisaORCID,Glicksberg Benjamin SORCID,Raut GaneshORCID,Cheetirala Satya NarayanORCID,Santana FabioORCID,Tamegue JulesORCID,Kia ArashORCID,Zimlichman EyalORCID,Levin Matthew AORCID,Freeman RobertORCID,Klang EyalORCID

Abstract

Background Predicting hospitalization from nurse triage notes has the potential to augment care. However, there needs to be careful considerations for which models to choose for this goal. Specifically, health systems will have varying degrees of computational infrastructure available and budget constraints. Objective To this end, we compared the performance of the deep learning, Bidirectional Encoder Representations from Transformers (BERT)–based model, Bio-Clinical-BERT, with a bag-of-words (BOW) logistic regression (LR) model incorporating term frequency–inverse document frequency (TF-IDF). These choices represent different levels of computational requirements. Methods A retrospective analysis was conducted using data from 1,391,988 patients who visited emergency departments in the Mount Sinai Health System spanning from 2017 to 2022. The models were trained on 4 hospitals’ data and externally validated on a fifth hospital’s data. Results The Bio-Clinical-BERT model achieved higher areas under the receiver operating characteristic curve (0.82, 0.84, and 0.85) compared to the BOW-LR-TF-IDF model (0.81, 0.83, and 0.84) across training sets of 10,000; 100,000; and ~1,000,000 patients, respectively. Notably, both models proved effective at using triage notes for prediction, despite the modest performance gap. Conclusions Our findings suggest that simpler machine learning models such as BOW-LR-TF-IDF could serve adequately in resource-limited settings. Given the potential implications for patient care and hospital resource management, further exploration of alternative models and techniques is warranted to enhance predictive performance in this critical domain. International Registered Report Identifier (IRRID) RR2-10.1101/2023.08.07.23293699

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3