Patient Embeddings From Diagnosis Codes for Health Care Prediction Tasks: Pat2Vec Machine Learning Framework

Author:

Steiger EdgarORCID,Kroll Lars EricORCID

Abstract

BackgroundIn health care, diagnosis codes in claims data and electronic health records (EHRs) play an important role in data-driven decision making. Any analysis that uses a patient’s diagnosis codes to predict future outcomes or describe morbidity requires a numerical representation of this diagnosis profile made up of string-based diagnosis codes. These numerical representations are especially important for machine learning models. Most commonly, binary-encoded representations have been used, usually for a subset of diagnoses. In real-world health care applications, several issues arise: patient profiles show high variability even when the underlying diseases are the same, they may have gaps and not contain all available information, and a large number of appropriate diagnoses must be considered.ObjectiveWe herein present Pat2Vec, a self-supervised machine learning framework inspired by neural network–based natural language processing that embeds complete diagnosis profiles into a small real-valued numerical vector.MethodsBased on German outpatient claims data with diagnosis codes according to the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10), we discovered an optimal vectorization embedding model for patient diagnosis profiles with Bayesian optimization for the hyperparameters. The calibration process ensured a robust embedding model for health care–relevant tasks by aggregating the metrics of different regression and classification tasks using different machine learning algorithms (linear and logistic regression as well as gradient-boosted trees). The models were tested against a baseline model that binary encodes the most common diagnoses. The study used diagnosis profiles and supplementary data from more than 10 million patients from 2016 to 2019 and was based on the largest German ambulatory claims data set. To describe subpopulations in health care, we identified clusters (via density-based clustering) and visualized patient vectors in 2D (via dimensionality reduction with uniform manifold approximation). Furthermore, we applied our vectorization model to predict prospective drug prescription costs based on patients’ diagnoses.ResultsOur final models outperform the baseline model (binary encoding) with equal dimensions. They are more robust to missing data and show large performance gains, particularly in lower dimensions, demonstrating the embedding model’s compression of nonlinear information. In the future, other sources of health care data can be integrated into the current diagnosis-based framework. Other researchers can apply our publicly shared embedding model to their own diagnosis data.ConclusionsWe envision a wide range of applications for Pat2Vec that will improve health care quality, including personalized prevention and signal detection in patient surveillance as well as health care resource planning based on subcohorts identified by our data-driven machine learning framework.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3