A Web-Based COVID-19 Tool for Testing Residents in Retirement Homes: Development Study

Author:

Davoodi MansoorORCID,Batista AnaORCID,Mertel AdamORCID,Senapati AbhishekORCID,Abdussalam WildanORCID,Vyskocil JiriORCID,Barbieri GiuseppeORCID,Fan KaiORCID,Schlechte-Welnicz WeronikaORCID,M Calabrese JustinORCID

Abstract

Background Long-term care facilities have been widely affected by the COVID-19 pandemic. Empirical evidence demonstrated that older people are the most impacted and are at higher risk of mortality after being infected. Regularly testing care facility residents is a practical approach to detecting infections proactively. In many cases, the care staff must perform the tests on the residents while also providing essential care, which in turn causes imbalances in their working time. Once an outbreak occurs, suppressing the spread of the virus in retirement homes (RHs) is challenging because the residents are in contact with each other, and isolation measures cannot be widely enforced. Regular testing strategies, on the other hand, have been shown to effectively prevent outbreaks in RHs. However, high-frequency testing may consume substantial staff working time, which results in a trade-off between the time invested in testing and the time spent providing essential care to residents. Objective We developed a web application (Retirement Home Testing Optimizer) to assist RH managers in identifying effective testing schedules for residents. The outcome of the app, called the “testing strategy,” is based on dividing facility residents into groups and then testing no more than 1 group per day. Methods We created the web application by incorporating influential factors such as the number of residents and staff, the average rate of contacts, the amount of time spent to test, and constraints on the test interval and size of groups. We developed mixed integer nonlinear programming models for balancing staff workload in long-term care facilities while minimizing the expected detection time of a probable infection inside the facility. Additionally, by leveraging symmetries in the problem, we proposed a fast and efficient local search method to find the optimal solution. Results Considering the number of residents and staff and other practical constraints of the facilities, the proposed application computes the optimal trade-off testing strategy and suggests the corresponding grouping and testing schedule for residents. The current version of the application is deployed on the server of the Where2Test project and is accessible on their website. The application is open source, and all contents are offered in English and German. We provide comprehensive instructions and guidelines for easy use and understanding of the application’s functionalities. The application was launched in July 2022, and it is currently being tested in RHs in Saxony, Germany. Conclusions Recommended testing strategies by our application are tailored to each RH and the goals set by the managers. We advise the users of the application that the proposed model and approach focus on the expected scenarios, that is, the expected risk of infection, and they do not guarantee the avoidance of worst-case scenarios.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference31 articles.

1. Nursing homes during the COVID-19 pandemic: a scoping review of challenges and responses

2. Where2Test Website FrontendRodare2023-11-17https://rodare.hzdr.de/record/2349/

3. Where2Test Website BackendRodare2023-11-17https://rodare.hzdr.de/record/2347

4. Robert Koch InstitutTäglicher lagebericht des RKI zur coronavirus-krankheit-2019 (COVID-19). 13.07.2020-AKTUALISIERTER STAND FÜR DEUTSCHLAND20202023-10-17https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-07-27-de.pdf?__blob=publicationFile

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3