Abstract
Phishing is also the most common type of data breach. As a result, it is carried out by sending an email with links that lead to fraudulent websites. This technique is especially targeted to large companies. Usually, the attackers send emails with work-related information. Machine learning is one of the most successful techniques for detecting phishing. This paper analyzed the results of various machine learning techniques for predicting phishing websites. And also describes the various methods that are used to identify phishing websites. Some of these include the SVM classification method, Random Forest method, and AdaBoost method. Ensemble model that combines the SVM, Random Forest, and AdaBoost methods was able to classify a phishing site with an accuracy of 96%
Publisher
The World Academy of Research in Science and Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献