Measures of Engagement With mHealth Interventions in Patients With Heart Failure: Scoping Review

Author:

Madujibeya IfeanyiORCID,Lennie TerryORCID,Aroh AdaezeORCID,Chung Misook LORCID,Moser DebraORCID

Abstract

Background Despite the potential of mobile health (mHealth) interventions to facilitate the early detection of signs of heart failure (HF) decompensation and provide personalized management of symptoms, the outcomes of such interventions in patients with HF have been inconsistent. As engagement with mHealth is required for interventions to be effective, poor patient engagement with mHealth interventions may be associated with mixed evidence. It is crucial to understand how engagement with mHealth interventions is measured in patients with HF, and the effects of engagement on HF outcomes. Objective In this review, we aimed to describe measures of patient engagement with mHealth interventions and the effects of engagement on HF outcomes. Methods We conducted a systematic literature search in 7 databases for relevant studies published in the English language from 2009 to September 2021 and reported the descriptive characteristics of the studies. We used content analysis to identify themes that described patient engagement with mHealth interventions in the qualitative studies included in the review. Results We synthesized 32 studies that operationalized engagement with mHealth interventions in 4771 patients with HF (3239/4771, 67.88%, male), ranging from a sample of 7 to 1571 (median 53.3) patients, followed for a median duration of 90 (IQR 45-180) days. Patient engagement with mHealth interventions was measured only quantitatively based on system usage data in 72% (23/32) of the studies, only qualitatively based on data from semistructured interviews and focus groups in 6% (2/32) of studies, and by a combination of both quantitative and qualitative data in 22% (7/32) of studies. System usage data were evaluated using 6 metrics of engagement: number of physiological parameters transmitted (19/30, 63% studies), number of HF questionnaires completed (2/30, 7% studies), number of log-ins (4/30, 13% studies), number of SMS text message responses (1/30, 3% studies), time spent (5/30, 17% studies), and the number of features accessed and screen viewed (4/30, 13% studies). There was a lack of consistency in how the system usage metrics were reported across studies. In total, 80% of the studies reported only descriptive characteristics of system usage data. The emotional, cognitive, and behavioral domains of patient engagement were identified through qualitative studies. Patient engagement levels ranged from 45% to 100% and decreased over time. The effects of engagement on HF knowledge, self-care, exercise adherence, and HF hospitalization were inconclusive. Conclusions The measures of patient engagement with mHealth interventions in patients with HF are underreported and lack consistency. The application of inferential analytical methods to engagement data is extremely limited. There is a need for a working group on mHealth that may consolidate the previous operational definitions of patient engagement into an optimal and standardized measure.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3