Predicting Long-Term Engagement in mHealth Apps: Comparative Study of Engagement Indices

Author:

Tak Yae WonORCID,Lee Jong WonORCID,Kim JunetaeORCID,Lee YuraORCID

Abstract

Background Digital health care apps, including digital therapeutics, have the potential to increase accessibility and improve patient engagement by overcoming the limitations of traditional facility-based medical treatments. However, there are no established tools capable of quantitatively measuring long-term engagement at present. Objective This study aimed to evaluate an existing engagement index (EI) in a commercial health management app for long-term use and compare it with a newly developed EI. Methods Participants were recruited from cancer survivors enrolled in a randomized controlled trial that evaluated the impact of mobile health apps on recovery. Of these patients, 240 were included in the study and randomly assigned to the Noom app (Noom Inc). The newly developed EI was compared with the existing EI, and a long-term use analysis was conducted. Furthermore, the new EI was evaluated based on adapted measurements from the Web Matrix Visitor Index, focusing on click depth, recency, and loyalty indices. Results The newly developed EI model outperformed the existing EI model in terms of predicting EI of a 6- to 9-month period based on the EI of a 3- to 6-month period. The existing model had a mean squared error of 0.096, a root mean squared error of 0.310, and an R2 of 0.053. Meanwhile, the newly developed EI models showed improved performance, with the best one achieving a mean squared error of 0.025, root mean squared error of 0.157, and R2 of 0.610. The existing EI exhibited significant associations: the click depth index (hazard ratio [HR] 0.49, 95% CI 0.29-0.84; P<.001) and loyalty index (HR 0.17, 95% CI 0.09-0.31; P<.001) were significantly associated with improved survival, whereas the recency index exhibited no significant association (HR 1.30, 95% CI 1.70-2.42; P=.41). Among the new EI models, the EI with a menu combination of menus available in the app’s free version yielded the most promising result. Furthermore, it exhibited significant associations with the loyalty index (HR 0.32, 95% CI 0.16-0.62; P<.001) and the recency index (HR 0.47, 95% CI 0.30-0.75; P<.001). Conclusions The newly developed EI model outperformed the existing model in terms of the prediction of long-term user engagement and compliance in a mobile health app context. We emphasized the importance of log data and suggested avenues for future research to address the subjectivity of the EI and incorporate a broader range of indices for comprehensive evaluation.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3