Quantification of Airborne Resistant Organisms With Temporal and Spatial Diversity in Bangladesh: Protocol for a Cross-Sectional Study

Author:

Asaduzzaman MuhammadORCID,Hossain Muhammed IqbalORCID,Saha Sumita RaniORCID,Islam Md RayhanulORCID,Ahmed NiyazORCID,Islam Mohammad AminulORCID

Abstract

BackgroundAntimicrobial resistance is a widespread, alarming issue in global health and a significant contributor to human death and illness, especially in low and middle-income countries like Bangladesh. Despite extensive work conducted in environmental settings, there is a scarcity of knowledge about the presence of resistant organisms in the air.ObjectiveThe objective of this protocol is to quantify and characterize the airborne resistomes in Bangladesh, which will be a guide to identify high-risk environments for multidrug-resistant pathogens with their spatiotemporal diversity.MethodsThis is a cross-sectional study with an environmental, systematic, and grid sampling strategy focused on collecting air samples from different outdoor environments during the dry and wet seasons. The four environmental compartments are the frequent human exposure sites in both urban and rural settings: urban residential areas (n=20), live bird markets (n=20), rural households (n=20), and poultry farms (n=20). We obtained air samples from 80 locations in two seasons by using an active microbial air sampler. From each location, five air samples were collected in different media to yield the total bacterial count of 3rd generation cephalosporin (3GC) resistant Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci and methicillin-resistant Staphylococcus aureus.ResultsThe study started in January 2018, and the collection of air samples was completed in November 2018. We have received 800 air samples from 80 study locations in both dry and wet seasons. Currently, the laboratory analysis is ongoing, and we expect to receive the preliminary results by October 2019. We will publish the complete result as soon as we clean and analyze the data and draft the manuscript.ConclusionsThe existence of resistant bacteria in the air like those producing extended-spectrum beta-lactamases, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococci, and methicillin-resistant Staphylococcus aureus will justify our hypothesis that the outdoor environment (air) in Bangladesh acts as a reservoir for bacteria that carry genes conferring resistance to antibiotics. To our knowledge, this is the first study to explore the presence of superbugs in the air in commonly exposed areas in Bangladesh.International Registered Report Identifier (IRRID)DERR1-10.2196/14574

Publisher

JMIR Publications Inc.

Subject

General Medicine

Reference52 articles.

1. O’NeillJReview on Antimicrobial Resistance:Tackling drug-resistant infections globally201412112019-11-19United KingdomUK Department of HealthAntimicrobial Resistance: Tackling a Crisis for the Future Health and Wealth of Nations https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf

2. Environmental pollution by antibiotics and by antibiotic resistance determinants

3. Antibiotics and antibiotic resistance in water environments

4. Acquired Antibiotic Resistance Genes: An Overview

5. Sampling the Antibiotic Resistome

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3