A Deep Learning Approach to Refine the Identification of High-Quality Clinical Research Articles From the Biomedical Literature: Protocol for Algorithm Development and Validation

Author:

Abdelkader WaelORCID,Navarro TamaraORCID,Parrish RickORCID,Cotoi ChrisORCID,Germini FedericoORCID,Linkins Lori-AnnORCID,Iorio AlfonsoORCID,Haynes R BrianORCID,Ananiadou SophiaORCID,Chu LingyangORCID,Lokker CynthiaORCID

Abstract

Background A barrier to practicing evidence-based medicine is the rapidly increasing body of biomedical literature. Use of method terms to limit the search can help reduce the burden of screening articles for clinical relevance; however, such terms are limited by their partial dependence on indexing terms and usually produce low precision, especially when high sensitivity is required. Machine learning has been applied to the identification of high-quality literature with the potential to achieve high precision without sacrificing sensitivity. The use of artificial intelligence has shown promise to improve the efficiency of identifying sound evidence. Objective The primary objective of this research is to derive and validate deep learning machine models using iterations of Bidirectional Encoder Representations from Transformers (BERT) to retrieve high-quality, high-relevance evidence for clinical consideration from the biomedical literature. Methods Using the HuggingFace Transformers library, we will experiment with variations of BERT models, including BERT, BioBERT, BlueBERT, and PubMedBERT, to determine which have the best performance in article identification based on quality criteria. Our experiments will utilize a large data set of over 150,000 PubMed citations from 2012 to 2020 that have been manually labeled based on their methodological rigor for clinical use. We will evaluate and report on the performance of the classifiers in categorizing articles based on their likelihood of meeting quality criteria. We will report fine-tuning hyperparameters for each model, as well as their performance metrics, including recall (sensitivity), specificity, precision, accuracy, F-score, the number of articles that need to be read before finding one that is positive (meets criteria), and classification probability scores. Results Initial model development is underway, with further development planned for early 2022. Performance testing is expected to star in February 2022. Results will be published in 2022. Conclusions The experiments will aim to improve the precision of retrieving high-quality articles by applying a machine learning classifier to PubMed searching. International Registered Report Identifier (IRRID) DERR1-10.2196/29398

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3