Combating Fraudulent Participation in Urban American Indian and Alaska Native Virtual Health Research: Protocol for Increasing Data Integrity in Online Research (PRIOR)

Author:

Reed Nicole DORCID,Bull SheanaORCID,Shrestha UmitORCID,Sarche MichelleORCID,Kaufman Carol EORCID

Abstract

Background While the advantages of using the internet and social media for research recruitment are well documented, the evolving online environment also enhances motivations for misrepresentation to receive incentives or to “troll” research studies. Such fraudulent assaults can compromise data integrity, with substantial losses in project time; money; and especially for vulnerable populations, research trust. With the rapid advent of new technology and ever-evolving social media platforms, it has become easier for misrepresentation to occur within online data collection. This perpetuation can occur by bots or individuals with malintent, but careful planning can help aid in filtering out fraudulent data. Objective Using an example with urban American Indian and Alaska Native young women, this paper aims to describe PRIOR (Protocol for Increasing Data Integrity in Online Research), which is a 2-step integration protocol for combating fraudulent participation in online survey research. Methods From February 2019 to August 2020, we recruited participants for formative research preparatory to an online randomized control trial of a preconceptual health program. First, we described our initial protocol for preventing fraudulent participation, which proved to be unsuccessful. Then, we described modifications we made in May 2020 to improve the protocol performance and the creation of PRIOR. Changes included transferring data collection platforms, collecting embedded geospatial variables, enabling timing features within the screening survey, creating URL links for each method or platform of data collection, and manually confirming potentially eligible participants’ identifying information. Results Before the implementation of PRIOR, the project experienced substantial fraudulent attempts at study enrollment, with less than 1% (n=6) of 1300 screened participants being identified as truly eligible. With the modified protocol, of the 461 individuals who completed a screening survey, 381 did not meet the eligibility criteria assessed on the survey. Of the 80 that did, 25 (31%) were identified as ineligible via PRIOR. A total of 55 (69%) were identified as eligible and verified in the protocol and were enrolled in the formative study. Conclusions Fraudulent surveys compromise study integrity, validity of the data, and trust among participant populations. They also deplete scarce research resources including respondent compensation and personnel time. Our approach of PRIOR to prevent online misrepresentation in data was successful. This paper reviews key elements regarding fraudulent data participation in online research and demonstrates why enhanced protocols to prevent fraudulent data collection are crucial for building trust with vulnerable populations. Trial Registration ClinicalTrials.gov NCT04376346; https://www.clinicaltrials.gov/study/NCT04376346 International Registered Report Identifier (IRRID) DERR1-10.2196/52281

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3