Ranking Rule-Based Automatic Explanations for Machine Learning Predictions on Asthma Hospital Encounters in Patients With Asthma: Retrospective Cohort Study

Author:

Zhang XiaoyiORCID,Luo GangORCID

Abstract

Background Asthma hospital encounters impose a heavy burden on the health care system. To improve preventive care and outcomes for patients with asthma, we recently developed a black-box machine learning model to predict whether a patient with asthma will have one or more asthma hospital encounters in the succeeding 12 months. Our model is more accurate than previous models. However, black-box machine learning models do not explain their predictions, which forms a barrier to widespread clinical adoption. To solve this issue, we previously developed a method to automatically provide rule-based explanations for the model’s predictions and to suggest tailored interventions without sacrificing model performance. For an average patient correctly predicted by our model to have future asthma hospital encounters, our explanation method generated over 5000 rule-based explanations, if any. However, the user of the automated explanation function, often a busy clinician, will want to quickly obtain the most useful information for a patient by viewing only the top few explanations. Therefore, a methodology is required to appropriately rank the explanations generated for a patient. However, this is currently an open problem. Objective The aim of this study is to develop a method to appropriately rank the rule-based explanations that our automated explanation method generates for a patient. Methods We developed a ranking method that struck a balance among multiple factors. Through a secondary analysis of 82,888 data instances of adults with asthma from the University of Washington Medicine between 2011 and 2018, we demonstrated our ranking method on the test case of predicting asthma hospital encounters in patients with asthma. Results For each patient predicted to have asthma hospital encounters in the succeeding 12 months, the top few explanations returned by our ranking method typically have high quality and low redundancy. Many top-ranked explanations provide useful insights on the various aspects of the patient’s situation, which cannot be easily obtained by viewing the patient’s data in the current electronic health record system. Conclusions The explanation ranking module is an essential component of the automated explanation function, and it addresses the interpretability issue that deters the widespread adoption of machine learning predictive models in clinical practice. In the next few years, we plan to test our explanation ranking method on predictive modeling problems addressing other diseases as well as on data from other health care systems. International Registered Report Identifier (IRRID) RR2-10.2196/5039

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference55 articles.

1. Most recent National Asthma DataCenters for Disease Control and Prevention20202021-01-29https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm

2. Chronic respiratory diseases: asthmaWorld Health Organization20202021-01-31https://www.who.int/news-room/q-a-detail/chronic-respiratory-diseases-asthma

3. The Economic Burden of Asthma in the United States, 2008–2013

4. Managed Care Rebound? Recent Changes In Health Plans' Cost Containment Strategies

5. Computer-based Models to Identify High-risk Children with Asthma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3