Abstract
Background
Chronic obstructive pulmonary disease (COPD) is a major cause of death and places a heavy burden on health care. To optimize the allocation of precious preventive care management resources and improve the outcomes for high-risk patients with COPD, we recently built the most accurate model to date to predict severe COPD exacerbations, which need inpatient stays or emergency department visits, in the following 12 months. Our model is a machine learning model. As is the case with most machine learning models, our model does not explain its predictions, forming a barrier for clinical use. Previously, we designed a method to automatically provide rule-type explanations for machine learning predictions and suggest tailored interventions with no loss of model performance. This method has been tested before for asthma outcome prediction but not for COPD outcome prediction.
Objective
This study aims to assess the generalizability of our automatic explanation method for predicting severe COPD exacerbations.
Methods
The patient cohort included all patients with COPD who visited the University of Washington Medicine facilities between 2011 and 2019. In a secondary analysis of 43,576 data instances, we used our formerly developed automatic explanation method to automatically explain our model’s predictions and suggest tailored interventions.
Results
Our method explained the predictions for 97.1% (100/103) of the patients with COPD whom our model correctly predicted to have severe COPD exacerbations in the following 12 months and the predictions for 73.6% (134/182) of the patients with COPD who had ≥1 severe COPD exacerbation in the following 12 months.
Conclusions
Our automatic explanation method worked well for predicting severe COPD exacerbations. After further improving our method, we hope to use it to facilitate future clinical use of our model.
International Registered Report Identifier (IRRID)
RR2-10.2196/13783
Subject
Health Information Management,Health Informatics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献