Abstract
Background
Artificial intelligence (AI) can transform health care processes with its increasing ability to translate complex structured and unstructured data into actionable clinical decisions. Although it has been established that AI is much more efficient than a clinician, the adoption rate has been slower in health care. Prior studies have pointed out that the lack of trust in AI, privacy concerns, degrees of customer innovativeness, and perceived novelty value influence AI adoption. With the promotion of AI products to patients, the role of rhetoric in influencing these factors has received scant attention.
Objective
The main objective of this study was to examine whether communication strategies (ethos, pathos, and logos) are more successful in overcoming factors that hinder AI product adoption among patients.
Methods
We conducted experiments in which we manipulated the communication strategy (ethos, pathos, and logos) in promotional ads for an AI product. We collected responses from 150 participants using Amazon Mechanical Turk. Participants were randomly exposed to a specific rhetoric-based advertisement during the experiments.
Results
Our results indicate that using communication strategies to promote an AI product affects users’ trust, customer innovativeness, and perceived novelty value, leading to improved product adoption. Pathos-laden promotions improve AI product adoption by nudging users’ trust (n=52; β=.532; P<.001) and perceived novelty value of the product (n=52; β=.517; P=.001). Similarly, ethos-laden promotions improve AI product adoption by nudging customer innovativeness (n=50; β=.465; P<.001). In addition, logos-laden promotions improve AI product adoption by alleviating trust issues (n=48; β=.657; P<.001).
Conclusions
Promoting AI products to patients using rhetoric-based advertisements can help overcome factors that hinder AI adoption by assuaging user concerns about using a new AI agent in their care process.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献