A Portable Smartphone-Based Laryngoscope System for High-Speed Vocal Cord Imaging of Patients With Throat Disorders: Instrument Validation Study

Author:

Kim YoungkyuORCID,Oh JeongminORCID,Choi Seung-HoORCID,Jung AhraORCID,Lee June-GooORCID,Lee Yoon SeORCID,Kim Jun KiORCID

Abstract

Background Currently, high-speed digital imaging (HSDI), especially endoscopic HSDI, is routinely used for the diagnosis of vocal cord disorders. However, endoscopic HSDI devices are usually large and costly, which limits access to patients in underdeveloped countries and in regions with inadequate medical infrastructure. Modern smartphones have sufficient functionality to process the complex calculations that are required for processing high-resolution images and videos with a high frame rate. Recently, several attempts have been made to integrate medical endoscopes with smartphones to make them more accessible to people in underdeveloped countries. Objective This study aims to develop a smartphone adaptor for endoscopes, which enables smartphone-based vocal cord imaging, to demonstrate the feasibility of performing high-speed vocal cord imaging via the high-speed imaging functions of a high-performance smartphone camera, and to determine the acceptability of the smartphone-based high-speed vocal cord imaging system for clinical applications in developing countries. Methods A customized smartphone adaptor optical relay was designed for clinical endoscopy using selective laser melting–based 3D printing. A standard laryngoscope was attached to the smartphone adaptor to acquire high-speed vocal cord endoscopic images. Only existing basic functions of the smartphone camera were used for HSDI of the vocal cords. Extracted still frames were observed for qualitative glottal volume and shape. For image processing, segmented glottal and vocal cord areas were calculated from whole HSDI frames to characterize the amplitude of the vibrations on each side of the glottis, including the frequency, edge length, glottal areas, base cord, and lateral phase differences over the acquisition time. The device was incorporated into a preclinical videokymography diagnosis routine to compare functionality. Results Smartphone-based HSDI with the smartphone-endoscope adaptor could achieve 940 frames per second and a resolution of 1280 by 720 frames, which corresponds to the detection of 3 to 8 frames per vocal cycle at double the spatial resolution of existing devices. The device was used to image the vocal cords of 4 volunteers: 1 healthy individual and 3 patients with vocal cord paralysis, chronic laryngitis, or vocal cord polyps. The resultant image stacks were sufficient for most diagnostic purposes. The cost of the device including the smartphone was lower than that of existing HSDI devices. The image processing and analytics demonstrated the successful calculation of relevant diagnostic variables from the acquired images. Patients with vocal pathologies were easily differentiable in the quantitative data. Conclusions A smartphone-based HSDI endoscope system can function as a point-of-care clinical diagnostic device. The resulting analysis is of higher quality than that accessible by videostroboscopy and promises comparable quality and greater accessibility than HSDI. In particular, this system is suitable for use as an accessible diagnostic tool in underdeveloped areas with inadequate medical service infrastructure.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3