Vision-Based Assistance for Vocal Fold Identification in Laryngoscopy with Knowledge Distillation

Author:

Dao Thao Thi Phuong1234,Pham Minh-Khoi5,Tran Mai-Khiem123,Ha Chanh Cong6,Van Boi Ngoc7,Tran Bich Anh8,Tran Minh-Triet123

Affiliation:

1. University of Science, VNU-HCMC, Ho Chi Minh City, Vietnam

2. John von Neumann Institute, VNU-HCMC, Ho Chi Minh City, Vietnam

3. Vietnam National University, Ho Chi Minh City, Vietnam

4. Otorhinolaryngology Department, Thong Nhat Hospital, Ho Chi Minh City, Vietnam

5. Dublin City University, Dublin, Ireland

6. Otorhinolaryngology Department, 7A Military Hospital, Ho Chi Minh City, Vietnam

7. Otorhinolaryngology Department, Vinmec Central Park International Hospital, Ho Chi Minh City, Vietnam

8. Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam

Abstract

Laryngoscopy images play a vital role in merging computer vision and otorhinolaryngology research. However, limited studies offer laryngeal datasets for comparative evaluation. Hence, this study introduces a novel dataset focusing on vocal fold images. Additionally, we propose a lightweight network utilizing knowledge distillation, with our student model achieving around 98.4% accuracy-comparable to the original EfficientNetB1 while reducing model weights by up to 88%. We also present an AI-assisted smartphone solution, enabling a portable and intelligent laryngoscopy system that aids laryngoscopists in efficiently targeting vocal fold areas for observation and diagnosis. To sum up, our contribution includes a laryngeal image dataset and a compressed version of the efficient model, suitable for handheld laryngoscopy devices.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3