Accuracy of 11 Wearable, Nearable, and Airable Consumer Sleep Trackers: Prospective Multicenter Validation Study

Author:

Lee TaeyoungORCID,Cho YounghoonORCID,Cha Kwang SuORCID,Jung JinhwanORCID,Cho JungimORCID,Kim HyunggugORCID,Kim DaewooORCID,Hong JoonkiORCID,Lee DongheonORCID,Keum MoonsikORCID,Kushida Clete AORCID,Yoon In-YoungORCID,Kim Jeong-WhunORCID

Abstract

Background Consumer sleep trackers (CSTs) have gained significant popularity because they enable individuals to conveniently monitor and analyze their sleep. However, limited studies have comprehensively validated the performance of widely used CSTs. Our study therefore investigated popular CSTs based on various biosignals and algorithms by assessing the agreement with polysomnography. Objective This study aimed to validate the accuracy of various types of CSTs through a comparison with in-lab polysomnography. Additionally, by including widely used CSTs and conducting a multicenter study with a large sample size, this study seeks to provide comprehensive insights into the performance and applicability of these CSTs for sleep monitoring in a hospital environment. Methods The study analyzed 11 commercially available CSTs, including 5 wearables (Google Pixel Watch, Galaxy Watch 5, Fitbit Sense 2, Apple Watch 8, and Oura Ring 3), 3 nearables (Withings Sleep Tracking Mat, Google Nest Hub 2, and Amazon Halo Rise), and 3 airables (SleepRoutine, SleepScore, and Pillow). The 11 CSTs were divided into 2 groups, ensuring maximum inclusion while avoiding interference between the CSTs within each group. Each group (comprising 8 CSTs) was also compared via polysomnography. Results The study enrolled 75 participants from a tertiary hospital and a primary sleep-specialized clinic in Korea. Across the 2 centers, we collected a total of 3890 hours of sleep sessions based on 11 CSTs, along with 543 hours of polysomnography recordings. Each CST sleep recording covered an average of 353 hours. We analyzed a total of 349,114 epochs from the 11 CSTs compared with polysomnography, where epoch-by-epoch agreement in sleep stage classification showed substantial performance variation. More specifically, the highest macro F1 score was 0.69, while the lowest macro F1 score was 0.26. Various sleep trackers exhibited diverse performances across sleep stages, with SleepRoutine excelling in the wake and rapid eye movement stages, and wearables like Google Pixel Watch and Fitbit Sense 2 showing superiority in the deep stage. There was a distinct trend in sleep measure estimation according to the type of device. Wearables showed high proportional bias in sleep efficiency, while nearables exhibited high proportional bias in sleep latency. Subgroup analyses of sleep trackers revealed variations in macro F1 scores based on factors, such as BMI, sleep efficiency, and apnea-hypopnea index, while the differences between male and female subgroups were minimal. Conclusions Our study showed that among the 11 CSTs examined, specific CSTs showed substantial agreement with polysomnography, indicating their potential application in sleep monitoring, while other CSTs were partially consistent with polysomnography. This study offers insights into the strengths of CSTs within the 3 different classes for individuals interested in wellness who wish to understand and proactively manage their own sleep.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3