Classifying Autism From Crowdsourced Semistructured Speech Recordings: Machine Learning Model Comparison Study

Author:

Chi Nathan AORCID,Washington PeterORCID,Kline AaronORCID,Husic ArmanORCID,Hou CathyORCID,He ChloeORCID,Dunlap KaitlynORCID,Wall Dennis PORCID

Abstract

Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in altered behavior, social development, and communication patterns. In recent years, autism prevalence has tripled, with 1 in 44 children now affected. Given that traditional diagnosis is a lengthy, labor-intensive process that requires the work of trained physicians, significant attention has been given to developing systems that automatically detect autism. We work toward this goal by analyzing audio data, as prosody abnormalities are a signal of autism, with affected children displaying speech idiosyncrasies such as echolalia, monotonous intonation, atypical pitch, and irregular linguistic stress patterns. Objective We aimed to test the ability for machine learning approaches to aid in detection of autism in self-recorded speech audio captured from children with ASD and neurotypical (NT) children in their home environments. Methods We considered three methods to detect autism in child speech: (1) random forests trained on extracted audio features (including Mel-frequency cepstral coefficients); (2) convolutional neural networks trained on spectrograms; and (3) fine-tuned wav2vec 2.0—a state-of-the-art transformer-based speech recognition model. We trained our classifiers on our novel data set of cellphone-recorded child speech audio curated from the Guess What? mobile game, an app designed to crowdsource videos of children with ASD and NT children in a natural home environment. Results The random forest classifier achieved 70% accuracy, the fine-tuned wav2vec 2.0 model achieved 77% accuracy, and the convolutional neural network achieved 79% accuracy when classifying children’s audio as either ASD or NT. We used 5-fold cross-validation to evaluate model performance. Conclusions Our models were able to predict autism status when trained on a varied selection of home audio clips with inconsistent recording qualities, which may be more representative of real-world conditions. The results demonstrate that machine learning methods offer promise in detecting autism automatically from speech without specialized equipment.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Biomedical Engineering,Pediatrics, Perinatology and Child Health

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3