Multimodal deep learning for dementia classification using text and audio

Author:

Lin Kaiying,Washington Peter Y.

Abstract

AbstractDementia is a progressive neurological disorder that affects the daily lives of older adults, impacting their verbal communication and cognitive function. Early diagnosis is important to enhance the lifespan and quality of life for affected individuals. Despite its importance, diagnosing dementia is a complex process. Automated machine learning solutions involving multiple types of data have the potential to improve the process of automated dementia screening. In this study, we build deep learning models to classify dementia cases from controls using the Pitt Cookie Theft dataset from DementiaBank, a database of short participant responses to the structured task of describing a picture of a cookie theft. We fine-tune Wav2vec and Word2vec baseline models to make binary predictions of dementia from audio recordings and text transcripts, respectively. We conduct experiments with four versions of the dataset: (1) the original data, (2) the data with short sentences removed, (3) text-based augmentation of the original data, and (4) text-based augmentation of the data with short sentences removed. Our results indicate that synonym-based text data augmentation generally enhances the performance of models that incorporate the text modality. Without data augmentation, models using the text modality achieve around 60% accuracy and 70% AUROC scores, and with data augmentation, the models achieve around 80% accuracy and 90% AUROC scores. We do not observe significant improvements in performance with the addition of audio or timestamp information into the model. We include a qualitative error analysis of the sentences that are misclassified under each study condition. This study provides preliminary insights into the effects of both text-based data augmentation and multimodal deep learning for automated dementia classification.

Funder

National Science Foundation CC

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3