Enhancing Early Dementia Detection: A Machine Learning Approach Leveraging Cognitive and Neuroimaging Features for Optimal Predictive Performance

Author:

Irfan Muhammad1,Shahrestani Seyed1,Elkhodr Mahmoud2ORCID

Affiliation:

1. School of Computer, Data and Mathematical Sciences, Western Sydney University, Penrith, NSW 2751, Australia

2. School of Engineering and Technology, CQUniversity, Sydney, NSW 2000, Australia

Abstract

Dementia, including Alzheimer’s Disease (AD), is a complex condition, and early detection remains a formidable challenge due to limited patient records and uncertainty in identifying relevant features. This paper proposes a machine learning approach to address this issue, utilizing cognitive and neuroimaging features for training predictive models. This study highlighted the viability of cognitive test scores in dementia detection—a procedure that offers the advantage of simplicity. The AdaBoost Ensemble model, trained on cognitive features, displayed a robust performance with an accuracy rate of approximately 83%. Notably, this model surpassed benchmark models such as the Artificial Neural Network, Support Vector Machine, and Naïve Bayes. This study underscores the potential of cognitive tests and machine learning for early dementia detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Designing serious games for cognitive assessment of the elderly;Tong;Proc. Int. Symp. Hum. Factors Ergon. Health Care,2014

2. Tang, J., Alelyani, S., and Liu, H. (2023, September 12). Feature selection for classification: A review. Data Classification: Algorithms and Applications 2014. Available online: https://www.cse.msu.edu/~tangjili/publication/feature_selection_for_classification.pdf.

3. Prince, M.J. (2015). World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends, Alzheimer’s Disease International.

4. Australia, D., Baker, S., and Banerjee, S. (2019). Alzheimer’s Disease International: World Alzheimer Report 2019: Attitudes to Dementia, Alzheimer’s Disease International.

5. The granulin gene family: From cancer to dementia;Bateman;Bioassays,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3