ChatGPT With GPT-4 Outperforms Emergency Department Physicians in Diagnostic Accuracy: Retrospective Analysis

Author:

Hoppe John MichaelORCID,Auer Matthias KORCID,Strüven AnnaORCID,Massberg SteffenORCID,Stremmel ChristopherORCID

Abstract

Background OpenAI’s ChatGPT is a pioneering artificial intelligence (AI) in the field of natural language processing, and it holds significant potential in medicine for providing treatment advice. Additionally, recent studies have demonstrated promising results using ChatGPT for emergency medicine triage. However, its diagnostic accuracy in the emergency department (ED) has not yet been evaluated. Objective This study compares the diagnostic accuracy of ChatGPT with GPT-3.5 and GPT-4 and primary treating resident physicians in an ED setting. Methods Among 100 adults admitted to our ED in January 2023 with internal medicine issues, the diagnostic accuracy was assessed by comparing the diagnoses made by ED resident physicians and those made by ChatGPT with GPT-3.5 or GPT-4 against the final hospital discharge diagnosis, using a point system for grading accuracy. Results The study enrolled 100 patients with a median age of 72 (IQR 58.5-82.0) years who were admitted to our internal medicine ED primarily for cardiovascular, endocrine, gastrointestinal, or infectious diseases. GPT-4 outperformed both GPT-3.5 (P<.001) and ED resident physicians (P=.01) in diagnostic accuracy for internal medicine emergencies. Furthermore, across various disease subgroups, GPT-4 consistently outperformed GPT-3.5 and resident physicians. It demonstrated significant superiority in cardiovascular (GPT-4 vs ED physicians: P=.03) and endocrine or gastrointestinal diseases (GPT-4 vs GPT-3.5: P=.01). However, in other categories, the differences were not statistically significant. Conclusions In this study, which compared the diagnostic accuracy of GPT-3.5, GPT-4, and ED resident physicians against a discharge diagnosis gold standard, GPT-4 outperformed both the resident physicians and its predecessor, GPT-3.5. Despite the retrospective design of the study and its limited sample size, the results underscore the potential of AI as a supportive diagnostic tool in ED settings.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3