Impact of a Commercial Artificial Intelligence–Driven Patient Self-Assessment Solution on Waiting Times at General Internal Medicine Outpatient Departments: Retrospective Study

Author:

Harada YukinoriORCID,Shimizu TaroORCID

Abstract

Background Patient waiting time at outpatient departments is directly related to patient satisfaction and quality of care, particularly in patients visiting the general internal medicine outpatient departments for the first time. Moreover, reducing wait time from arrival in the clinic to the initiation of an examination is key to reducing patients’ anxiety. The use of automated medical history–taking systems in general internal medicine outpatient departments is a promising strategy to reduce waiting times. Recently, Ubie Inc in Japan developed AI Monshin, an artificial intelligence–based, automated medical history–taking system for general internal medicine outpatient departments. Objective We hypothesized that replacing the use of handwritten self-administered questionnaires with the use of AI Monshin would reduce waiting times in general internal medicine outpatient departments. Therefore, we conducted this study to examine whether the use of AI Monshin reduced patient waiting times. Methods We retrospectively analyzed the waiting times of patients visiting the general internal medicine outpatient department at a Japanese community hospital without an appointment from April 2017 to April 2020. AI Monshin was implemented in April 2019. We compared the median waiting time before and after implementation by conducting an interrupted time-series analysis of the median waiting time per month. We also conducted supplementary analyses to explain the main results. Results We analyzed 21,615 visits. The median waiting time after AI Monshin implementation (74.4 minutes, IQR 57.1) was not significantly different from that before AI Monshin implementation (74.3 minutes, IQR 63.7) (P=.12). In the interrupted time-series analysis, the underlying linear time trend (–0.4 minutes per month; P=.06; 95% CI –0.9 to 0.02), level change (40.6 minutes; P=.09; 95% CI –5.8 to 87.0), and slope change (–1.1 minutes per month; P=.16; 95% CI –2.7 to 0.4) were not statistically significant. In a supplemental analysis of data from 9054 of 21,615 visits (41.9%), the median examination time after AI Monshin implementation (6.0 minutes, IQR 5.2) was slightly but significantly longer than that before AI Monshin implementation (5.7 minutes, IQR 5.0) (P=.003). Conclusions The implementation of an artificial intelligence–based, automated medical history–taking system did not reduce waiting time for patients visiting the general internal medicine outpatient department without an appointment, and there was a slight increase in the examination time after implementation; however, the system may have enhanced the quality of care by supporting the optimization of staff assignments.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3