Effects of Combinational Use of Additional Differential Diagnostic Generators on the Diagnostic Accuracy of the Differential Diagnosis List Developed by an Artificial Intelligence–Driven Automated History–Taking System: Pilot Cross-Sectional Study

Author:

Harada YukinoriORCID,Tomiyama ShusakuORCID,Sakamoto TetsuORCID,Sugimoto ShuORCID,Kawamura RenORCID,Yokose MasashiORCID,Hayashi ArisaORCID,Shimizu TaroORCID

Abstract

Background Low diagnostic accuracy is a major concern in automated medical history–taking systems with differential diagnosis (DDx) generators. Extending the concept of collective intelligence to the field of DDx generators such that the accuracy of judgment becomes higher when accepting an integrated diagnosis list from multiple people than when accepting a diagnosis list from a single person may be a possible solution. Objective The purpose of this study is to assess whether the combined use of several DDx generators improves the diagnostic accuracy of DDx lists. Methods We used medical history data and the top 10 DDx lists (index DDx lists) generated by an artificial intelligence (AI)–driven automated medical history–taking system from 103 patients with confirmed diagnoses. Two research physicians independently created the other top 10 DDx lists (second and third DDx lists) per case by imputing key information into the other 2 DDx generators based on the medical history generated by the automated medical history–taking system without reading the index lists generated by the automated medical history–taking system. We used the McNemar test to assess the improvement in diagnostic accuracy from the index DDx lists to the three types of combined DDx lists: (1) simply combining DDx lists from the index, second, and third lists; (2) creating a new top 10 DDx list using a 1/n weighting rule; and (3) creating new lists with only shared diagnoses among DDx lists from the index, second, and third lists. We treated the data generated by 2 research physicians from the same patient as independent cases. Therefore, the number of cases included in analyses in the case using 2 additional lists was 206 (103 cases × 2 physicians’ input). Results The diagnostic accuracy of the index lists was 46% (47/103). Diagnostic accuracy was improved by simply combining the other 2 DDx lists (133/206, 65%, P<.001), whereas the other 2 combined DDx lists did not improve the diagnostic accuracy of the DDx lists (106/206, 52%, P=.05 in the collective list with the 1/n weighting rule and 29/206, 14%, P<.001 in the only shared diagnoses among the 3 DDx lists). Conclusions Simply adding each of the top 10 DDx lists from additional DDx generators increased the diagnostic accuracy of the DDx list by approximately 20%, suggesting that the combinational use of DDx generators early in the diagnostic process is beneficial.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3