Abstract
BackgroundVirtual reality is increasingly being utilized by clinicians to facilitate analgesia and anxiolysis within an inpatient setting. There is however, a lack of a clinically relevant review to guide its use for this purpose.ObjectiveTo systematically review the current evidence for the efficacy of virtual reality as an analgesic in the management of acute pain and anxiolysis in an inpatient setting.MethodsA comprehensive search was conducted up to and including January 2019 on PubMed, Ovid Medline, EMBASE, and Cochrane Database of Systematic reviews according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Search terms included virtual reality, vr, and pain. Primary articles with a focus on acute pain in the clinical setting were considered for the review. Primary outcome measures included degree of analgesia afforded by virtual reality therapy, degree of anxiolysis afforded by virtual reality therapy, effect of virtual reality on physiological parameters, side effects precipitated by virtual reality, virtual reality content type, and type of equipment utilized.ResultsEighteen studies were deemed eligible for inclusion in this systematic review; 67% (12/18) of studies demonstrated significant reductions in pain with the utilization of virtual reality; 44% (8/18) of studies assessed the effects of virtual reality on procedural anxiety, with 50% (4/8) of these demonstrating significant reductions; 28% (5/18) of studies screened for side effects with incidence rates of 0.5% to 8%; 39% (7/18) of studies evaluated the effects of virtual reality on autonomic arousal as a biomarker of pain, with 29% (2/7) demonstrating significant changes; 100% (18/18) of studies utilized a head mounted display to deliver virtual reality therapy, with 50% being in active form (participants interacting with the environment) and 50% being in passive form (participants observing the content only).ConclusionsAvailable evidence suggests that virtual reality therapy can be applied to facilitate analgesia for acute pain in a variety of inpatient settings. Its effects, however, are likely to vary by patient population and indication. This highlights the need for individualized pilot testing of virtual reality therapy’s effects for each specific clinical use case rather than generalizing its use for the broad indication of facilitating analgesia. In addition, virtual reality therapy has the added potential of concurrently providing procedural anxiolysis, thereby improving patient experience and cooperation, while being associated with a low incidence of side effects (nausea, vomiting, eye strain, and dizziness). Furthermore, findings indicated a head mounted display should be utilized to deliver virtual reality therapy in a clinical setting with a slight preference for active over passive virtual reality for analgesia. There, however, appears to be insufficient evidence to substantiate the effect of virtual reality on autonomic arousal, and this should be considered at best to be for investigational uses, at present.