Indications of Depressive Symptoms During the COVID-19 Pandemic in Germany: Comparison of National Survey and Twitter Data

Author:

Cohrdes CarolineORCID,Yenikent SerenORCID,Wu JiawenORCID,Ghanem BilalORCID,Franco-Salvador MarcORCID,Vogelgesang FelicitasORCID

Abstract

Background The current COVID-19 pandemic is associated with extensive individual and societal challenges, including challenges to both physical and mental health. To date, the development of mental health problems such as depressive symptoms accompanying population-based federal distancing measures is largely unknown, and opportunities for rapid, effective, and valid monitoring are currently a relevant matter of investigation. Objective In this study, we aim to investigate, first, the temporal progression of depressive symptoms during the COVID-19 pandemic and, second, the consistency of the results from tweets and survey-based self-reports of depressive symptoms within the same time period. Methods Based on a cross-sectional population survey of 9011 German adolescents and adults (n=4659, 51.7% female; age groups from 15 to 50 years and older) and a sample of 88,900 tweets (n=74,587, 83.9% female; age groups from 10 to 50 years and older), we investigated five depressive symptoms (eg, depressed mood and energy loss) using items from the Patient Health Questionnaire (PHQ-8) before, during, and after relaxation of the first German social contact ban from January to July 2020. Results On average, feelings of worthlessness were the least frequently reported symptom (survey: n=1011, 13.9%; Twitter: n=5103, 5.7%) and fatigue or loss of energy was the most frequently reported depressive symptom (survey: n=4472, 51.6%; Twitter: n=31,005, 34.9%) among both the survey and Twitter respondents. Young adult women and people living in federal districts with high COVID-19 infection rates were at an increased risk for depressive symptoms. The comparison of the survey and Twitter data before and after the first contact ban showed that German adolescents and adults had a significant decrease in feelings of fatigue and energy loss over time. The temporal progression of depressive symptoms showed high correspondence between both data sources (ρ=0.76-0.93; P<.001), except for diminished interest and depressed mood, which showed a steady increase even after the relaxation of the contact ban among the Twitter respondents but not among the survey respondents. Conclusions Overall, the results indicate relatively small differences in depressive symptoms associated with social distancing measures during the COVID-19 pandemic and highlight the need to differentiate between positive (eg, energy level) and negative (eg, depressed mood) associations and variations over time. The results also underscore previous suggestions of Twitter data’s potential to help identify hot spots of declining and improving public mental health and thereby help provide early intervention measures, especially for young and middle-aged adults. Further efforts are needed to investigate the long-term consequences of recurring lockdown phases and to address the limitations of social media data such as Twitter data to establish real-time public mental surveillance approaches.

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

Reference63 articles.

1. TankovskaHTwitter: number of monthly active users 2010-2019Statista20202020-08-19https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

2. TankovskaHSocial media usage in Germany 2020Statista20202020-08-19https://www.statista.com/statistics/1059426/social-media-usage-germany/

3. Digital Disease Detection — Harnessing the Web for Public Health Surveillance

4. Twitter as a Tool for Health Research: A Systematic Review

5. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3