Sentiments about Mental Health on Twitter—Before and during the COVID-19 Pandemic

Author:

Beierle Felix12ORCID,Pryss Rüdiger2ORCID,Aizawa Akiko1

Affiliation:

1. National Institute of Informatics, Tokyo 101-8430, Japan

2. Institute of Clinical Epidemiology and Biometry (ICE-B), University of Würzburg, 97074 Würzburg, Germany

Abstract

During the COVID-19 pandemic, the novel coronavirus had an impact not only on public health but also on the mental health of the population. Public sentiment on mental health and depression is often captured only in small, survey-based studies, while work based on Twitter data often only looks at the period during the pandemic and does not make comparisons with the pre-pandemic situation. We collected tweets that included the hashtags #MentalHealth and #Depression from before and during the pandemic (8.5 months each). We used LDA (Latent Dirichlet Allocation) for topic modeling and LIWC, VADER, and NRC for sentiment analysis. We used three machine-learning classifiers to seek evidence regarding an automatically detectable change in tweets before vs. during the pandemic: (1) based on TF-IDF values, (2) based on the values from the sentiment libraries, (3) based on tweet content (deep-learning BERT classifier). Topic modeling revealed that Twitter users who explicitly used the hashtags #Depression and especially #MentalHealth did so to raise awareness. We observed an overall positive sentiment, and in tough times such as during the COVID-19 pandemic, tweets with #MentalHealth were often associated with gratitude. Among the three classification approaches, the BERT classifier showed the best performance, with an accuracy of 81% for #MentalHealth and 79% for #Depression. Although the data may have come from users familiar with mental health, these findings can help gauge public sentiment on the topic. The combination of (1) sentiment analysis, (2) topic modeling, and (3) tweet classification with machine learning proved useful in gaining comprehensive insight into public sentiment and could be applied to other data sources and topics.

Funder

IFI program of the German Academic Exchange Service

Open Access Publication Fund of the University of Wuerzburg

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3