ChatGPT Interactive Medical Simulations for Early Clinical Education: Case Study

Author:

Scherr RileyORCID,Halaseh Faris FORCID,Spina AidinORCID,Andalib SamanORCID,Rivera RonaldORCID

Abstract

Background The transition to clinical clerkships can be difficult for medical students, as it requires the synthesis and application of preclinical information into diagnostic and therapeutic decisions. ChatGPT—a generative language model with many medical applications due to its creativity, memory, and accuracy—can help students in this transition. Objective This paper models ChatGPT 3.5’s ability to perform interactive clinical simulations and shows this tool’s benefit to medical education. Methods Simulation starting prompts were refined using ChatGPT 3.5 in Google Chrome. Starting prompts were selected based on assessment format, stepwise progression of simulation events and questions, free-response question type, responsiveness to user inputs, postscenario feedback, and medical accuracy of the feedback. The chosen scenarios were advanced cardiac life support and medical intensive care (for sepsis and pneumonia). Results Two starting prompts were chosen. Prompt 1 was developed through 3 test simulations and used successfully in 2 simulations. Prompt 2 was developed through 10 additional test simulations and used successfully in 1 simulation. Conclusions ChatGPT is capable of creating simulations for early clinical education. These simulations let students practice novel parts of the clinical curriculum, such as forming independent diagnostic and therapeutic impressions over an entire patient encounter. Furthermore, the simulations can adapt to user inputs in a way that replicates real life more accurately than premade question bank clinical vignettes. Finally, ChatGPT can create potentially unlimited free simulations with specific feedback, which increases access for medical students with lower socioeconomic status and underresourced medical schools. However, no tool is perfect, and ChatGPT is no exception; there are concerns about simulation accuracy and replicability that need to be addressed to further optimize ChatGPT’s performance as an educational resource.

Publisher

JMIR Publications Inc.

Subject

Education

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3