Use of Patient-Reported Symptoms from an Online Symptom Tracking Tool for Dementia Severity Staging: Development and Validation of a Machine Learning Approach

Author:

Shehzad AaqibORCID,Rockwood KennethORCID,Stanley JustinORCID,Dunn TaylorORCID,Howlett Susan EORCID

Abstract

Background SymptomGuide Dementia (DGI Clinical Inc) is a publicly available online symptom tracking tool to support caregivers of persons living with dementia. The value of such data are enhanced when the specific dementia stage is identified. Objective We aimed to develop a supervised machine learning algorithm to classify dementia stages based on tracked symptoms. Methods We employed clinical data from 717 people from 3 sources: (1) a memory clinic; (2) long-term care; and (3) an open-label trial of donepezil in vascular and mixed dementia (VASPECT). Symptoms were captured with SymptomGuide Dementia. A clinician classified participants into 4 groups using either the Functional Assessment Staging Test or the Global Deterioration Scale as mild cognitive impairment, mild dementia, moderate dementia, or severe dementia. Individualized symptom profiles from the pooled data were used to train machine learning models to predict dementia severity. Models trained with 6 different machine learning algorithms were compared using nested cross-validation to identify the best performing model. Model performance was assessed using measures of balanced accuracy, precision, recall, Cohen κ, area under the receiver operating characteristic curve (AUROC), and area under the precision-recall curve (AUPRC). The best performing algorithm was used to train a model optimized for balanced accuracy. Results The study population was mostly female (424/717, 59.1%), older adults (mean 77.3 years, SD 10.6, range 40-100) with mild to moderate dementia (332/717, 46.3%). Age, duration of symptoms, 37 unique dementia symptoms, and 10 symptom-derived variables were used to distinguish dementia stages. A model trained with a support vector machine learning algorithm using a one-versus-rest approach showed the best performance. The correct dementia stage was identified with 83% balanced accuracy (Cohen κ=0.81, AUPRC 0.91, AUROC 0.96). The best performance was seen when classifying severe dementia (AUROC 0.99). Conclusions A supervised machine learning algorithm exhibited excellent performance in identifying dementia stages based on dementia symptoms reported in an online environment. This novel dementia staging algorithm can be used to describe dementia stage based on user-reported symptoms. This type of symptom recording offers real-world data that reflect important symptoms in people with dementia.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3