Abstract
Background
SymptomGuide Dementia (DGI Clinical Inc) is a publicly available online symptom tracking tool to support caregivers of persons living with dementia. The value of such data are enhanced when the specific dementia stage is identified.
Objective
We aimed to develop a supervised machine learning algorithm to classify dementia stages based on tracked symptoms.
Methods
We employed clinical data from 717 people from 3 sources: (1) a memory clinic; (2) long-term care; and (3) an open-label trial of donepezil in vascular and mixed dementia (VASPECT). Symptoms were captured with SymptomGuide Dementia. A clinician classified participants into 4 groups using either the Functional Assessment Staging Test or the Global Deterioration Scale as mild cognitive impairment, mild dementia, moderate dementia, or severe dementia. Individualized symptom profiles from the pooled data were used to train machine learning models to predict dementia severity. Models trained with 6 different machine learning algorithms were compared using nested cross-validation to identify the best performing model. Model performance was assessed using measures of balanced accuracy, precision, recall, Cohen κ, area under the receiver operating characteristic curve (AUROC), and area under the precision-recall curve (AUPRC). The best performing algorithm was used to train a model optimized for balanced accuracy.
Results
The study population was mostly female (424/717, 59.1%), older adults (mean 77.3 years, SD 10.6, range 40-100) with mild to moderate dementia (332/717, 46.3%). Age, duration of symptoms, 37 unique dementia symptoms, and 10 symptom-derived variables were used to distinguish dementia stages. A model trained with a support vector machine learning algorithm using a one-versus-rest approach showed the best performance. The correct dementia stage was identified with 83% balanced accuracy (Cohen κ=0.81, AUPRC 0.91, AUROC 0.96). The best performance was seen when classifying severe dementia (AUROC 0.99).
Conclusions
A supervised machine learning algorithm exhibited excellent performance in identifying dementia stages based on dementia symptoms reported in an online environment. This novel dementia staging algorithm can be used to describe dementia stage based on user-reported symptoms. This type of symptom recording offers real-world data that reflect important symptoms in people with dementia.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献