Abstract
Background
Renal cell carcinoma (RCC) has a high recurrence rate of 20% to 30% after nephrectomy for clinically localized disease, and more than 40% of patients eventually die of the disease, making regular monitoring and constant management of utmost importance.
Objective
The objective of this study was to develop an algorithm that predicts the probability of recurrence of RCC within 5 and 10 years of surgery.
Methods
Data from 6849 Korean patients with RCC were collected from eight tertiary care hospitals listed in the KOrean Renal Cell Carcinoma (KORCC) web-based database. To predict RCC recurrence, analytical data from 2814 patients were extracted from the database. Eight machine learning algorithms were used to predict the probability of RCC recurrence, and the results were compared.
Results
Within 5 years of surgery, the highest area under the receiver operating characteristic curve (AUROC) was obtained from the naïve Bayes (NB) model, with a value of 0.836. Within 10 years of surgery, the highest AUROC was obtained from the NB model, with a value of 0.784.
Conclusions
An algorithm was developed that predicts the probability of RCC recurrence within 5 and 10 years using the KORCC database, a large-scale RCC cohort in Korea. It is expected that the developed algorithm will help clinicians manage prognosis and establish customized treatment strategies for patients with RCC after surgery.
Subject
Health Information Management,Health Informatics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献