Machine learning based prediction for oncologic outcomes of renal cell carcinoma after surgery using Korean Renal Cell Carcinoma (KORCC) database

Author:

Kim Jung Kwon,Lee Sangchul,Hong Sung Kyu,Kwak Cheol,Jeong Chang Wook,Kang Seok Ho,Hong Sung-Hoo,Kim Yong-June,Chung Jinsoo,Hwang Eu Chang,Kwon Tae Gyun,Byun Seok-Soo,Jung Yu Jin,Lim Junghyun,Kim Jiyeon,Oh Hyeju

Abstract

AbstractWe developed a novel prediction model for recurrence and survival in patients with localized renal cell carcinoma (RCC) after surgery and a novel statistical method of machine learning (ML) to improve accuracy in predicting outcomes using a large Asian nationwide dataset, updated KOrean Renal Cell Carcinoma (KORCC) database that covered data for a total of 10,068 patients who had received surgery for RCC. After data pre-processing, feature selection was performed with an elastic net. Nine variables for recurrence and 13 variables for survival were extracted from 206 variables. Synthetic minority oversampling technique (SMOTE) was used for the training data set to solve the imbalance problem. We applied the most of existing ML algorithms introduced so far to evaluate the performance. We also performed subgroup analysis according to the histologic type. Diagnostic performances of all prediction models achieved high accuracy (range, 0.77–0.94) and F1-score (range, 0.77–0.97) in all tested metrics. In an external validation set, high accuracy and F1-score were well maintained in both recurrence and survival. In subgroup analysis of both clear and non-clear cell type RCC group, we also found a good prediction performance.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3