Weighted Average Based Differential Quadrature Method for One-Dimensional Homogeneous First Order Nonlinear Parabolic Partial Differential Equation

Author:

Koroche Kedir Aliyi1

Affiliation:

1. Department of Mathematics, College of Natural and Computational Sciences, Ambo University, Ambo, Ethiopia.

Abstract

In this paper, the weighted average-based differential quadrature method is presented for solving one-dimensional homogeneous first-order non-linear parabolic partial differential equation. First, the given solution domain is discretized by using uniform discretization grid point. Next, by using Taylor series expansion we obtain central finite difference discretization of the partial differential equation involving with temporal variable associated with weighted average of partial derivative concerning spatial variable. From this, we obtain the system of nonlinear ordinary differential equations and it is linearized by using the quasilinearization method. Then by using the polynomial-based differential quadrature method for approximating derivative involving with spatial variable at specified grid point, we obtain the system of linear equation. Then they obtained linear system equation is solved by using the LU matrix decomposition method. To validate the applicability of the proposed method, two model examples are considered and solved at each specific grid point on its solution domain. The stability and convergent analysis of the present method is worked by supported the theoretical and mathematical statements and the accuracy of the solution is obtained. The accuracy of the present method has been shown in the sense of root mean square error norm and maximum absolute error norm and the local behavior of the solution is captured exactly. Numerical versus exact solutions and behavior of maximum absolute error between them have been presented in terms of graphs and the corresponding root mean square error norm and maximum absolute error norm presented in tables. The present method approximates the exact solution very well and it is quite efficient and practically well suited for solving the non-linear parabolic equation. The numerical result presented in tables and graphs indicates that the approximate solution is in good agreement with the exact solution.

Publisher

Lattice Science Publication (LSP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3