Numerical Solution of In-Viscid Burger Equation in the Application of Physical Phenomena: The Comparison between Three Numerical Methods

Author:

Koroche Kedir Aliyi1ORCID

Affiliation:

1. Department of Mathematics, College of Natural and Computational Sciences, Ambo University, Ambo, Ethiopia

Abstract

In this paper, upwind approach, Lax–Friedrichs, and Lax–Wendroff schemes are applied for working solution of In-thick Burger equation in the application of physical phenomena and comparing their error norms. First, the given solution sphere is discretized by using an invariant discretization grid point. Next, by using Taylor series expansion, we gain discretized nonlinear difference scheme of given model problem. By rearranging this scheme, we gain three proposed schemes. To verify validity and applicability of proposed techniques, one model illustration with subordinated to three different original conditions that satisfy entropy condition are considered, and solved it at each specific interior grid points of solution interval, by applying all of the techniques. The stability and convergent analysis of present three techniques are also worked by supporting both theoretical and numerical fine statements. The accuracy of present techniques has been measured in the sense of average absolute error, root mean square error, and maximum absolute error norms. Comparisons of numerical gets crimes attained by these three methods are presented in table. Physical behaviors of numerical results are also presented in terms of graphs. As we can see from numerical results given in both tables and graphs, the approximate solution is good agreement with exact solutions. Therefore, the present systems approaches are relatively effective and virtually well suited to approximate the solution of in-viscous Burger equation.

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3