Abstract
Text is the most significant contributor to data generated on the Internet. Understanding a person's opinion is an essential part of natural language processing. However, people's views can be skewed and inaccurate if people use sarcasm when they post status updates, comment on blogs, and review products and movies. Sarcasm detection has gained an important role in social networking platforms because it can impact many applications such as sentimental analysis, opinion mining, and stance detection. Twitter is rapidly growing in volume, and its analysis presents significant challenges in detecting sarcasm. Our research work focuses on various methodologies available for detection of sarcasm. Various papers from recent years were collected and review was carried out. This paper discusses the literature on sarcasm detection under the category of datasets, in different pre-processing, feature extraction, feature selection, classification algorithms, and performance measures. This paper discusses the literature on sarcasm detection under the category of datasets, in different pre-processing, feature extraction, feature selection, classification algorithms, and performance measures. This work explores existing approaches, challenges, and future scopes for sarcasm detection in the Twitter dataset. This review bringsto light the analysis ofsarcasm identification in Twitter data and is intended to serve as a resource for researchers and practitioners interested in sarcasm detection and text classification.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Reference41 articles.
1. Sarcasm, S. M., Al-Samarraie, H., Alzahrani, A. I., & Wright, B. (2020). Sarcasm detection using machine learning algorithms in Twitter: A systematic review. International Journal of Market Research, 147078532092177. doi:10.1177/1470785320921779 https://doi.org/10.1177/1470785320921779
2. Muhammad Abulaish, Ashraf Kamal, Mohammed J. Zaki (202), A Survey of Figurative Language and Its Computational Detection in Online Social Networks, ACM Transactions on the WebVolume14Issue 1 February 2020 Article No.: 3pp 1-52https://doi.org/10.1145/3375547 https://doi.org/10.1145/3375547
3. Kumar, Y., Goel, N. AI-Based Learning Techniques for Sarcasm Detection of Social Media Tweets:State-of-the-ArtSurvey.SNCOMPUT.SCI.1,318(2020).https://doi.org/10.1007/s42979-020-00336-3 https://doi.org/10.1007/s42979-020-00336-3
4. Jariwala,V.P., Optimal Feature Extraction based Machine Learning Approach for Sarcasm Type Detection in News Headlines. International Journal of Computer Applications, 975, p.8887
5. Abuteir, Mohammed & Elsamani, Eltyeb.(2021).Automatic Sarcasm Detection in Arabic Text: A Supervised Classification Approach. International Journal of New Technology and Research. 7. 32-42.