Sarcasm detection using machine learning algorithms in Twitter: A systematic review

Author:

Sarsam Samer Muthana1ORCID,Al-Samarraie Hosam2,Alzahrani Ahmed Ibrahim3,Wright Bianca2

Affiliation:

1. School of Communication, Universiti Sains Malaysia, Penang, Malaysia

2. School of Media and Performing Arts, Coventry University, Coventry, UK

3. Department of Computer Science, King Saud University, Riyadh, Saudi Arabia

Abstract

Recognizing both literal and figurative meanings is crucial to understanding users’ opinions on various topics or events in social media. Detecting the sarcastic posts on social media has received much attention recently, particularly because sarcastic comments in the form of tweets often include positive words that represent negative or undesirable characteristics. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used to understand the application of different machine learning algorithms for sarcasm detection in Twitter. Extensive database searching led to the inclusion of 31 studies classified into two groups: Adapted Machine Learning Algorithms (AMLA) and Customized Machine Learning Algorithms (CMLA). The review results revealed that Support Vector Machine (SVM) was the best and the most commonly used AMLA for sarcasm detection in Twitter. In addition, combining Convolutional Neural Network (CNN) and SVM was found to offer a high prediction accuracy. Moreover, our result showed that using lexical, pragmatic, frequency, and part-of-speech tagging can contribute to the performance of SVM, whereas both lexical and personal features can enhance the performance of CNN-SVM. This work also addressed the main challenges faced by prior scholars when predicting sarcastic tweets. Such knowledge can be useful for future researchers or machine learning developers to consider the major issues of classifying sarcastic posts in social media.

Funder

King Saud University

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sarcasm detection using optimized bi-directional long short-term memory;Knowledge and Information Systems;2024-09-06

2. Changes in Online Moral Discourse About Public Figures During #MeToo;Affective Science;2024-08-01

3. Digital technologies meet soft laddering: A critical reflective perspective;International Journal of Market Research;2024-07-31

4. Harnessing Advanced Learning for Sarcasm Detection;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

5. Classification of Indonesian Sarcasm Tweets on X Platform Using Deep Learning;2024 7th International Conference on Informatics and Computational Sciences (ICICoS);2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3