Abstract
Internet of Things (IoT) makes everything in the real world to get connected. The resource constrained characteristics and the different types of technology and protocols tend to the IoT be more vulnerable than the conventional networks. Intrusion Detection System (IDS) is a tool which monitors analyzes and detects the abnormalities in the network activities. Machine Learning techniques are implemented with the Intrusion detection systems to enhance the performance of IDS. Various studies on IoT reveals that Artificial Neural Network (ANN) provides better accuracy and detection rate than other approaches. In this paper, an Artificial Neural Network based IDS (ANNIDS) technique based on Multilayer Perceptron (MLP) is proposed to detect the attacks initiated by the Destination Oriented Direct Acyclic Graph Information Solicitation (DIS) attack and Version attack in IoT environment. Contiki O.S/Cooja Simulator 3.0 is used for the IoT simulation.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献