Machine Learning-Based Intrusion Detection Methods in IoT Systems: A Comprehensive Review

Author:

Kikissagbe Brunel Rolack1,Adda Meddi1ORCID

Affiliation:

1. Mathematics, Computer Science and Engineering Departement, University of Quebec at Rimouski, Rimouski, QC G5L 3A1, Canada

Abstract

The rise of the Internet of Things (IoT) has transformed our daily lives by connecting objects to the Internet, thereby creating interactive, automated environments. However, this rapid expansion raises major security concerns, particularly regarding intrusion detection. Traditional intrusion detection systems (IDSs) are often ill-suited to the dynamic and varied networks characteristic of the IoT. Machine learning is emerging as a promising solution to these challenges, offering the intelligence and flexibility needed to counter complex and evolving threats. This comprehensive review explores different machine learning approaches for intrusion detection in IoT systems, covering supervised, unsupervised, and deep learning methods, as well as hybrid models. It assesses their effectiveness, limitations, and practical applications, highlighting the potential of machine learning to enhance the security of IoT systems. In addition, the study examines current industry issues and trends, highlighting the importance of ongoing research to keep pace with the rapidly evolving IoT security ecosystem.

Publisher

MDPI AG

Reference65 articles.

1. That ’Internet Of Things’ Thing;Ashton;RFID J.,2009

2. A Survey on Internet of Things From Industrial Market Perspective;Perera;IEEE Access,2014

3. Towards Machine Learning Based Intrusion Detection in IoT Networks;Islam;Comput. Mater. Contin.,2021

4. Ahmad, Z., Khan, A.S., Nisar, K., Haider, I., Hassan, R., Haque, M.R., Tarmizi, S., and Rodrigues, J.J.P.C. (2021). Anomaly Detection Using Deep Neural Network for IoT Architecture. Appl. Sci., 11.

5. Union Internationale des Télécommunications (2012). Infrastructure Mondiale de l’Information, Protocole Internet et RÉSeaux de Prochaine Génération, UIT.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3