Abstract
Background subtraction is a key part to detect moving objects from the video in computer vision field. It is used to subtract reference frame to every new frame of video scenes. There are wide varieties of background subtraction techniques available in literature to solve real life applications like crowd analysis, human activity tracking system, traffic analysis and many more. Moreover, there were not enough benchmark datasets available which can solve all the challenges of subtraction techniques for object detection. Thus challenges were found in terms of dynamic background, illumination changes, shadow appearance, occlusion and object speed. In this perspective, we have tried to provide exhaustive literature survey on background subtraction techniques for video surveillance applications to solve these challenges in real situations. Additionally, we have surveyed eight benchmark video datasets here namely Wallflower, BMC, PET, IBM, CAVIAR, CD.Net, SABS and RGB-D along with their available ground truth. This study evaluates the performance of five background subtraction methods using performance parameters such as specificity, sensitivity, FNR, PWC and F-Score in order to identify an accurate and efficient method for detecting moving objects in less computational time.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献