A Study on the Optimization Simulation of Big Data Video Image Keyframes in Motion Models

Author:

Guo Jianbang1,Sun Peng2ORCID,Tsai Sang-Bing3ORCID

Affiliation:

1. Athletics College, Beijing Sport University, Beijing 100084, China

2. Physical Education College, Anqing Normal University, Anhui 246133, China

3. Regional Green Economy Development Research Center, School of Business, Wuyi University, China

Abstract

In this paper, the signal of athletic sports video image frames is processed and studied according to the technology of big data. The sports video image-multiprocessing technology achieves interference-free research and analysis of sports technology and can meet multiple visual needs of sports technology analysis and evaluation through key technologies such as split-screen synchronous comparison, superimposed synchronous comparison, and video trajectory tracking. The sports video image-processing technology realizes the rapid extraction of key technical parameters of the sports scene, the panoramic map technology of sports video images, the split-lane calibration technology, and the development of special video image analysis software that is innovative in the field of athletics research. An image-blending approach is proposed to alleviate the problem of simple and complex background data imbalance, while enhancing the generalization ability of the network trained using small-scale datasets. Local detail features of the target are introduced in the online-tracking process by an efficient block-filter network. Moreover, online hard-sample learning is utilized to avoid the interference of similar objects to the tracker, thus improving the overall tracking performance. For the feature extraction problem of fuzzy videos, this paper proposes a fuzzy kernel extraction scheme based on the low-rank theory. The scheme fuses multiple fuzzy kernels of keyframe images by low-rank decomposition and then deblurs the video. Next, a double-detection mechanism is used to detect tampering points on the blurred video frames. Finally, the video-tampering points are located, and the specific way of video tampering is determined. Experiments on two public video databases and self-recorded videos show that the method is robust in fuzzy video forgery detection, and the efficiency of fuzzy video detection is improved compared to traditional video forgery detection methods.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. learning anomalous human actions using frames of interest and decoderless deep embedded clustering;International Journal of Machine Learning and Cybernetics;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3